
Nicole Schupp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3274923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selenium Supplementation Restores the Antioxidative Capacity and Prevents Cell Damage in Bone Marrow Stromal Cells In Vitro. Stem Cells, 2006, 24, 1226-1235.	1.4	171
2	Curcumin Ameliorates Kidney Function and Oxidative Stress in Experimental Chronic Kidney Disease. Basic and Clinical Pharmacology and Toxicology, 2018, 122, 65-73.	1.2	109
3	Effect of Gum Arabic on Oxidative Stress and Inflammation in Adenine–Induced Chronic Renal Failure in Rats. PLoS ONE, 2013, 8, e55242.	1.1	107
4	The Relation of Starch Phosphorylases to Starch Metabolism in Wheat. Plant and Cell Physiology, 2004, 45, 1471-1484.	1.5	72
5	Benfotiamine exhibits direct antioxidative capacity and prevents induction of DNA damage <i>in vitro</i> . Diabetes/Metabolism Research and Reviews, 2008, 24, 371-377.	1.7	72
6	Mineralocorticoid receptorâ€mediated DNA damage in kidneys of DOCAâ€salt hypertensive rats. FASEB Journal, 2011, 25, 968-978.	0.2	65
7	Rosuvastatin protects against oxidative stress and DNA damage in vitro via upregulation of glutathione synthesis. Atherosclerosis, 2008, 199, 278-287.	0.4	64
8	Aldosterone, oxidative stress, and NF-κB activation in hypertension-related cardiovascular and renal diseases. Free Radical Biology and Medicine, 2012, 53, 314-327.	1.3	56
9	1,25-Dihydroxyvitamin D3 Treatment Delays Cellular Aging in Human Mesenchymal Stem Cells while Maintaining Their Multipotent Capacity. PLoS ONE, 2012, 7, e29959.	1.1	53
10	Ameliorative Effect of Chrysin on Adenine-Induced Chronic Kidney Disease in Rats. PLoS ONE, 2015, 10, e0125285.	1.1	50
11	Angiotensin II-induced genomic damage in renal cells can be prevented by angiotensin II type 1 receptor blockage or radical scavenging. American Journal of Physiology - Renal Physiology, 2007, 292, F1427-F1434.	1.3	49
12	Genotoxicity of Advanced Glycation End Products: Involvement of Oxidative Stress and of Angiotensin II Type 1 Receptors. Annals of the New York Academy of Sciences, 2005, 1043, 685-695.	1.8	47
13	DNA Damage in Chronic Kidney Disease: Evaluation of Clinical Biomarkers. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.	1.9	47
14	Genomic damage and circulating AGE levels in patients undergoing daily versus standard haemodialysis. Nephrology Dialysis Transplantation, 2005, 20, 1936-1943.	0.4	46
15	Angiotensin II induces DNA damage via AT1 receptor and NADPH oxidase isoform Nox4. Mutagenesis, 2012, 27, 673-681.	1.0	46
16	Angiotensin II Induces DNA Damage in the Kidney. Cancer Research, 2008, 68, 9239-9246.	0.4	45
17	Reduction of the genomic damage level in haemodialysis patients by folic acid and vitamin B12 supplementation. Nephrology Dialysis Transplantation, 2008, 23, 3272-3279.	0.4	45
18	Effects of the SGLT-2 Inhibitor Canagliflozin on Adenine-Induced Chronic Kidney Disease in Rats. Cellular Physiology and Biochemistry, 2019, 52, 27-39.	1.1	43

NICOLE SCHUPP

#	Article	IF	CITATIONS
19	Aldosterone Causes DNA Strand Breaks and Chromosomal Damage in Renal Cells, Which are Prevented by Mineralocorticoid Receptor Antagonists. Hormone and Metabolic Research, 2010, 42, 458-465.	0.7	42
20	Aldosterone induces oxidative stress, oxidative DNA damage and NF-κB-activation in kidney tubule cells. Molecular Carcinogenesis, 2011, 50, 123-135.	1.3	42
21	Angiotensin II-induced hypertension dose-dependently leads to oxidative stress and DNA damage in mouse kidneys and hearts. Journal of Hypertension, 2013, 31, 333-344.	0.3	41
22	Benfotiamine reduces genomic damage in peripheral lymphocytes of hemodialysis patients. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 378, 283-291.	1.4	40
23	Effect of Different Hemodialysis Regimens on Genomic Damage in End-Stage Renal Failure. Seminars in Nephrology, 2006, 26, 28-32.	0.6	33
24	Antigenotoxic effects of the phytoestrogen pelargonidin chloride and the polyphenol chlorogenic acid. Molecular Nutrition and Food Research, 2007, 51, 880-887.	1.5	31
25	Superoxide anion and hydrogen peroxide-induced signaling and damage in angiotensin II and aldosterone action. Biological Chemistry, 2010, 391, 1265-79.	1.2	30
26	Blood pressure has only minor influence on aldosterone-induced oxidative stress and DNA damage in vivo. Free Radical Biology and Medicine, 2013, 54, 17-25.	1.3	30
27	Genomic Damage in Endstage Renal Disease—Contribution of Uremic Toxins. Toxins, 2010, 2, 2340-2358.	1.5	29
28	Therapeutic Effect of Chrysin on Adenine-Induced Chronic Kidney Disease in Rats. Cellular Physiology and Biochemistry, 2016, 38, 248-257.	1.1	29
29	Aldosterone Activates Transcription Factor Nrf2 in Kidney Cells Both <i>In Vitro</i> and <i>In Vivo</i> . Antioxidants and Redox Signaling, 2014, 21, 2126-2142.	2.5	28
30	The effect of activated charcoal on adenine-induced chronic renal failure in rats. Food and Chemical Toxicology, 2014, 65, 321-328.	1.8	26
31	Aldosterone induces fibrosis, oxidative stress and DNA damage in livers of male rats independent of blood pressure changes. Toxicology and Applied Pharmacology, 2014, 280, 399-407.	1.3	25
32	Genomic damage in end-stage renal failure: Potential involvement of advanced glycation end products and carbonyl stress. Seminars in Nephrology, 2004, 24, 474-478.	0.6	22
33	Aldosterone increases kidney tubule cell oxidants through calcium-mediated activation of NADPH oxidase and nitric oxide synthase. Free Radical Biology and Medicine, 2011, 51, 1996-2006.	1.3	21
34	Genomic damage in chronic renal failure—potential therapeutic interventions. , 2005, 15, 81-86.		20
35	Lovastatin prevents cisplatin-induced activation of pro-apoptotic DNA damage response (DDR) of renal tubular epithelial cells. Toxicology and Applied Pharmacology, 2016, 292, 103-114.	1.3	20
36	Oxidative DNA Damage in Kidneys and Heart of Hypertensive Mice Is Prevented by Blocking Angiotensin II and Aldosterone Receptors. PLoS ONE, 2014, 9, e115715.	1.1	20

NICOLE SCHUPP

#	Article	IF	CITATIONS
37	Effect of infliximab, a tumor necrosis factor-alpha inhibitor, on doxorubicin-induced nephrotoxicity in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 121-130.	1.4	16
38	Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon. American Journal of Translational Research (discontinued), 2015, 7, 28-38.	0.0	16
39	New Approaches for the Treatment of Genomic Damage in End-Stage Renal Disease. , 2008, 18, 127-133.		15
40	The Role of the Dopamine Transporter in Dopamineâ€Induced DNA Damage. Brain Pathology, 2011, 21, 237-248.	2.1	14
41	Aldosterone activates the oncogenic signals ERK1/2 and STAT3 via redoxâ€regulated mechanisms. Molecular Carcinogenesis, 2017, 56, 1868-1883.	1.3	12
42	The renoprotective effect of the dipeptidyl peptidase-4 inhibitor sitagliptin on adenine-induced kidney disease in rats. Biomedicine and Pharmacotherapy, 2019, 110, 667-676.	2.5	12
43	Genomic Damage and Malignancy in End-Stage Renal Failure: Do Advanced Glycation End Products Contribute?. Kidney and Blood Pressure Research, 2007, 30, 56-66.	0.9	11
44	Angiotensin II type 1a receptor-deficient mice develop angiotensin II-induced oxidative stress and DNA damage without blood pressure increase. American Journal of Physiology - Renal Physiology, 2017, 313, F1264-F1273.	1.3	11
45	Hepatic Rac1 GTPase contributes to liver-mediated basal immune homeostasis and LPS-induced endotoxemia. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1277-1292.	1.9	9
46	Genotoxicity of the neurotransmitter dopamine in vitro. Toxicology in Vitro, 2009, 23, 640-646.	1.1	8
47	AT1 Receptor Antagonist Candesartan Attenuates Genomic Damage in Peripheral Blood Lymphocytes of Patients on Maintenance Hemodialysis Treatment. Kidney and Blood Pressure Research, 2011, 34, 167-172.	0.9	8
48	Angiotensin II-induced hypertension increases the mutant frequency in rat kidney. Archives of Toxicology, 2019, 93, 2045-2055.	1.9	6
49	The NADPH Oxidase Isoform 1 Contributes to Angiotensin II-Mediated DNA Damage in the Kidney. Antioxidants, 2020, 9, 586.	2.2	6
50	Aldosterone Induces DNA Damage and Activation of Nrf2 Mainly in Tubuli of Mouse Kidneys. International Journal of Molecular Sciences, 2020, 21, 4679.	1.8	3
51	Reduced Circulating AGE Levels and Lower Genomic Damage in Patients Undergoing Daily versus Standard Hemodialysis. Annals of the New York Academy of Sciences, 2005, 1043, 925-925.	1.8	1
52	Advanced Glycation End Product-Induced DNA Damage: Involvement of Angiotensin II. Annals of the New York Academy of Sciences, 2005, 1043, 926-926.	1.8	0
53	Critical Role of the NAD(P)H Oxidase Subunit p47phox in the Formation of Oxidative DNA Damage. Free Radical Biology and Medicine, 2010, 49, S165.	1.3	0
54	Aldosterone Causes Oxidative Stress and DNA Damage in Vivo Via the Mineraolcorticoid Receptor and Independent of Blood Pressure. Free Radical Biology and Medicine, 2011, 51, S138-S139.	1.3	0