Alexander Pugachev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3274666/publications.pdf

Version: 2024-02-01

1307594 1281871 34 142 11 7 citations h-index g-index papers 35 35 35 44 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Simulation of an Electric Drive with an Induction Motor in Emergency and Abnormal Modes of a Frequency Converter. Russian Electrical Engineering, 2022, 93, 98-103.	0.6	1
2	Simulation of Traction Permanent Magnet Synchronous Motor Vector Control System. Electrotechnical Systems and Complexes, 2022, , 10-17.	0.2	3
3	Control system of temperature of locomotives traction frequency converters. MATEC Web of Conferences, 2021, 341, 00061.	0.2	O
4	Efficiency Increasing of Traction Electric Drives with Induction Motors and Vector Control System. Russian Electrical Engineering, 2021, 92, 476-480.	0.6	4
5	Indirect Determination of the Temperature of Induction-Motor Windings Based on Evaluation of Rotor Resistance. Russian Electrical Engineering, 2021, 92, 568-571.	0.6	1
6	Improving the energy efficiency of electric drives for auxiliary units of traction rolling stock. Journal of Physics: Conference Series, 2021, 2131, 042085.	0.4	0
7	Vector control system of electric traction drive with power losses minimization. Journal of Physics: Conference Series, 2021, 2131, 042090.	0.4	1
8	A System for Controlling the Thermal Behavior of Voltage Source Inverters. Russian Electrical Engineering, 2020, 91, 537-540.	0.6	0
9	MATHEMATICAL MODELING OF AN INDUCTUION MOTOR IN AN ARBITRARY REFERENCING FRAME. , 2020, , .		O
10	COMPARATIVE ASSESSMENT OF ENERGY EFFICIENCY OF CONTROL SYSTEMS OF AUTONOMOUS VOLTAGE INVERTER IN THE COMPOSITION OF AC ELECTRIC DRIVE. , 2020, , .		0
11	MATHEMATICAL SIMULATION OF THERMAL PROCCESSES IN INDUCTION MOTOR. , 2020, , .		O
12	SYNTHESIS OF THE DC TRACKING ELECTRIC DRIVE POSITION LOOP., 2020,,.		0
13	SIMULATION OF ELECTRIC DRIVE WITH AN INDUCTION MOTOR AND ROTOR RESISTANCE PULSE CONTROL. , 2020, , .		O
14	SIMULATION OF ELECTRIC DRIVE WITH INDUCTION MOTOR AND VECTOR CONTROL SYSTEM IN ENERGY SAVING MODE. , 2020, , .		0
15	Induction Motor Scalar Control System with Power Losses Minimization. , 2019, , .		7
16	Simulation of the Thermal State of Self-Excited Voltage Source Inverters. Russian Electrical Engineering, 2019, 90, 620-624.	0.6	4
17	Modeling of Sensorless Determination of the Resistance and Temperature of the Stator and Rotor Windings of an Asynchronous Motor. Russian Electrical Engineering, 2018, 89, 512-517.	0.6	7
18	Efficiency increasing of induction motor scalar control systems. , 2017, , .		17

#	Article	IF	CITATIONS
19	Comparative assessment of thermal processes in frequency converters., 2017,,.		1
20	A simplified equivalent thermal circuit for the substitution of a stator in an induction motor. Russian Electrical Engineering, 2017, 88, 600-604.	0.6	8
21	Temperature control of power semiconductor devices in traction applications. IOP Conference Series: Materials Science and Engineering, 2017, 177, 012141.	0.6	2
22	Investigation of induction motor temperature distribution in traction applications. IOP Conference Series: Earth and Environmental Science, 2017, 87, 032033.	0.3	3
23	Induction motor temperature influence on scalar control systems efficiency., 2016,,.		O
24	Simulation of induction motor temperature determination by additional voltage injections. , 2016, , .		1
25	Investigation of the dynamics of electric drive in fault modes of two- and three-level inverters. , 2016, , .		2
26	Scalar control systems for a traction induction motor. Russian Electrical Engineering, 2016, 87, 518-524.	0.6	15
27	Induction Motor Traction Drive with Slipping Protection. Applied Mechanics and Materials, 2015, 792, 101-106.	0.2	1
28	Experimental investigation of thermal processes in induction motor by physical modelling. , 2015, , .		0
29	Direct torque control of induction motors fed by a single frequency converter. Russian Electrical Engineering, 2015, 86, 527-533.	0.6	23
30	Automatic Temperature Regulation System of Locomotive Traction Induction Motors With Power Losses Minimization. JITA - Journal of Information Technology and Applications (Banja Luka) - APEIRON, 2015, 9, .	0.1	1
31	Control system of a tractive drive with temperature control of thermally loaded elements. Russian Electrical Engineering, 2014, 85, 513-518.	0.6	11
32	Definition of the Transfer Function Parameters of Asynchronous Motor as an Object of Temperature Control. Applied Mechanics and Materials, 2014, 698, 124-130.	0.2	3
33	Induction motor drives with minimal power losses. Russian Electrical Engineering, 2012, 83, 667-671.	0.6	15
34	The temperature effect on the performance of a traction asynchronous motor. Russian Electrical Engineering, 2011, 82, 445-448.	0.6	11