Wu Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3274517/publications.pdf

Version: 2024-02-01

		218592	175177
99	2,849	26	52
papers	citations	h-index	g-index
99	99	99	2012
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	DC/DC Conversion Systems Consisting of Multiple Converter Modules: Stability, Control, and Experimental Verifications. IEEE Transactions on Power Electronics, 2009, 24, 1463-1474.	5.4	312
2	Analysis and Comparison of Medium Voltage High Power DC/DC Converters for Offshore Wind Energy Systems. IEEE Transactions on Power Electronics, 2013, 28, 2014-2023.	5.4	243
3	Decentralized Multi-Agent System-Based Cooperative Frequency Control for Autonomous Microgrids With Communication Constraints. IEEE Transactions on Sustainable Energy, 2014, 5, 446-456.	5.9	227
4	Elimination of an Electrolytic Capacitor in AC/DC Light-Emitting Diode (LED) Driver With High Input Power Factor and Constant Output Current. IEEE Transactions on Power Electronics, 2012, 27, 1598-1607.	5.4	214
5	Control Strategy for Input-Series–Output-Parallel Converters. IEEE Transactions on Industrial Electronics, 2009, 56, 1174-1185.	5.2	196
6	A Novel Zero-Voltage-Switching PWM Full Bridge Converter. IEEE Transactions on Power Electronics, 2008, 23, 793-801.	5.4	117
7	Wireless Input-Voltage-Sharing Control Strategy for Input-Series Output-Parallel (ISOP) System Based on Positive Output-Voltage Gradient Method. IEEE Transactions on Industrial Electronics, 2014, 61, 6022-6030.	5.2	98
8	A Input-Series- and Output-Parallel-Connected Inverter System for High-Input-Voltage Applications. IEEE Transactions on Power Electronics, 2009, 24, 2127-2137.	5.4	81
9	Decentralized Voltage-Sharing Control Strategy for Fully Modular Input-Series–Output-Series System With Improved Voltage Regulation. IEEE Transactions on Industrial Electronics, 2015, 62, 2777-2787.	5.2	76
10	Zero-Voltage-Switching PWM Hybrid Full-Bridge Three-Level Converter. IEEE Transactions on Power Electronics, 2005, 20, 395-404.	5.4	75
11	Novel Self-Configurable Current-Mirror Techniques for Reducing Current Imbalance in Parallel Light-Emitting Diode (LED) Strings. IEEE Transactions on Power Electronics, 2012, 27, 2153-2162.	5.4	72
12	A Review of Voltage/Current Sharing Techniques for Series–Parallel-Connected Modular Power Conversion Systems. IEEE Transactions on Power Electronics, 2020, 35, 12383-12400.	5.4	68
13	An ISOP Hybrid DC Transformer Combining Multiple SRCs and DAB Converters to Interconnect MVDC and LVDC Distribution Networks. IEEE Transactions on Power Electronics, 2020, 35, 11442-11452.	5.4	64
14	Cooperative Control to Enhance the Frequency Stability of Islanded Microgrids with DFIG-SMES. Energies, 2013, 6, 3951-3971.	1.6	51
15	Fault Localization Strategy for Modular Multilevel Converters Under Submodule Lower Switch Open-Circuit Fault. IEEE Transactions on Power Electronics, 2020, 35, 5190-5204.	5.4	46
16	A Hybrid ZVZCS Dual-Transformer-Based Full-Bridge Converter Operating in DCM for MVDC Grids. IEEE Transactions on Power Electronics, 2017, 32, 5162-5170.	5.4	43
17	An Impedance-Based Stability Assessment Methodology for DC Distribution Power System With Multivoltage Levels. IEEE Transactions on Power Electronics, 2020, 35, 4033-4047.	5.4	37
18	A Multiport Power Electronic Transformer Based on Modular Multilevel Converter and Mixed-Frequency Modulation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 1284-1288.	2.2	35

#	Article	IF	CITATIONS
19	Capacitor ESR and <i>C</i> Monitoring in Modular Multilevel Converters. IEEE Transactions on Power Electronics, 2020, 35, 4063-4075.	5. 4	34
20	Design of Nonlinear Droop Control in DC Microgrid for Desired Voltage Regulation and Current Sharing Accuracy. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 168-175.	2.7	33
21	Flexible Power Distribution Control in an Asymmetrical-Cascaded-Multilevel-Converter-Based Hybrid Energy Storage System. IEEE Transactions on Industrial Electronics, 2018, 65, 6150-6159.	5. 2	31
22	Accurate Calculation and Sensitivity Analysis of Leakage Inductance of High-Frequency Transformer With Litz Wire Winding. IEEE Transactions on Power Electronics, 2020, 35, 3951-3962.	5.4	31
23	A Fully Modular Control Strategy for Input-Series Output-Parallel (ISOP) Inverter System Based on Positive Output-Voltage-Amplitude Gradient. IEEE Transactions on Power Electronics, 2018, 33, 2878-2887.	5.4	30
24	A Generic Small-Signal Stability Criterion of DC Distribution Power System: Bus Node Impedance Criterion (BNIC). IEEE Transactions on Power Electronics, 2022, 37, 6116-6131.	5 . 4	29
25	A Simple Modulation Scheme With Zero Common-Mode Voltage and Improved Efficiency for Direct Matrix Converter-Fed PMSM Drives. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 3712-3722.	3.7	28
26	Indirect Input-Series Output-Parallel DC–DC Full Bridge Converter System Based on Asymmetric Pulsewidth Modulation Control Strategy. IEEE Transactions on Power Electronics, 2019, 34, 3164-3177.	5 . 4	27
27	Switch Open-Circuit Fault Localization Strategy for MMCs Using Sliding-Time Window Based Features Extraction Algorithm. IEEE Transactions on Industrial Electronics, 2021, 68, 10193-10206.	5. 2	27
28	Hybrid Resonant ZVZCS PWM Full-Bridge Converter for Large Photovoltaic Parks Connecting to MVDC Grids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5, 1078-1090.	3.7	26
29	Analysis of Strategy for Achieving Zero-Current Switching in Full-Bridge Converters. IEEE Transactions on Industrial Electronics, 2018, 65, 5509-5517.	5 . 2	26
30	A Hybrid Resonant ZVZCS Three-Level Converter for MVDC-Connected Offshore Wind Power Collection Systems. IEEE Transactions on Power Electronics, 2018, 33, 6633-6645.	5 . 4	24
31	A Resonant ZVZCS DC–DC Converter With Two Uneven Transformers for an MVDC Collection System of Offshore Wind Farms. IEEE Transactions on Industrial Electronics, 2017, 64, 7886-7895.	5.2	23
32	Decentralized Control for Fully Modular Input-Series Output-Parallel (ISOP) Inverter System Based on the Active Power Inverse-Droop Method. IEEE Transactions on Power Electronics, 2018, 33, 7521-7530.	5 . 4	23
33	A Novel ZVS PWM Phase-shifted Full-bridge Converter with Controlled Auxiliary Circuit. , 2009, , .		21
34	A MMC-Based Multiport Power Electronic Transformer With Shared Medium-Frequency Transformer. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 727-731.	2.2	21
35	A Sharing-Branch Modular Multilevel DC Transformer With Wide Voltage Range Regulation for DC Distribution Grids. IEEE Transactions on Power Electronics, 2022, 37, 5714-5730.	5. 4	19
36	A Power Adaptive Impedance Reshaping Strategy for Cascaded DC System With Buck-Type Constant Power Load. IEEE Transactions on Power Electronics, 2022, 37, 8909-8920.	5 . 4	19

#	Article	IF	Citations
37	An Improved Three-Phase Buck Rectifier Topology With Reduced Voltage Stress on Transistors. IEEE Transactions on Power Electronics, 2020, 35, 2458-2466.	5.4	18
38	Impedance-Based Stability Analysis Methods for DC Distribution Power System With Multivoltage Levels. IEEE Transactions on Power Electronics, 2021, 36, 9193-9208.	5.4	18
39	Modeling and Control of a Two-Bus System With Grid-Forming and Grid-Following Converters. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 7133-7149.	3.7	17
40	A Modular Multilevel Converter With Novel Double Reverse Blocking Sub-Modules for DC Fault Current Blocking Capability. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 740-744.	2.2	16
41	Small-Signal Stability Analysis and Criterion of Triple-Stage Cascaded DC System. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 2576-2586.	3.7	16
42	The Active Power Control of Cascaded Multilevel Converter Based Hybrid Energy Storage System. IEEE Transactions on Power Electronics, 2019, 34, 8241-8253.	5.4	14
43	A Three-Phase Triple-Voltage Dual-Active-Bridge Converter for Medium Voltage DC Transformer to Reduce the Number of Submodules. IEEE Transactions on Power Electronics, 2020, 35, 11574-11588.	5.4	14
44	A Hybrid Resonant ZCS PWM Converter for Renewable Energy Sources Connecting to MVDC Collection System. IEEE Transactions on Industrial Electronics, 2018, 65, 7911-7920.	5.2	12
45	A Novel Hybrid DC Transformer Combining Modular Multilevel Converter Structure and Series-Connected Semiconductor Switches. IEEE Transactions on Power Electronics, 2022, 37, 5699-5713.	5.4	11
46	Input-Series and Output-Parallel Connected Inverter System for High Input Voltage Applications. , 2009, , .		10
47	A novel full-bridge converter achieving ZVS over wide load range with a passive auxiliary circuit. , 2010, , .		9
48	Novel Modeling and Design of a Dual Half Bridge DC-DC Converter Applied in Supercapacitor Energy Storage System. Electric Power Components and Systems, 2014, 42, 1398-1408.	1.0	9
49	A novel interline DC power flow controller for meshed HVDC grids. , 2016, , .		9
50	Optimization Design of High-Power High-Frequency Transformer Based on Multi-Objective Genetic Algorithm. , 2018, , .		9
51	An Assembly High Voltage DC Circuit Breaker Based on Pre-charged Capacitors. , 2018, , .		9
52	Improved Control Strategy of Triple-Voltage Three-Phase DAB (T ² -DAB) Converter for Current Stress and Zero-Voltage-Switching Optimization. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 773-784.	3.7	9
53	An improved active frequency drift islanding detection method with lower total harmonic distortion. , $2013, , .$		7
54	A Novel Hybrid DC Circuit Breaker Based on Precharged Capacitors. , 2018, , .		7

#	Article	IF	Citations
55	Asymmetric Pulse Frequency Modulation With Constant On-Time for Series Resonant Converter in High-Voltage High-Power Applications. IEEE Access, 2019, 7, 176971-176981.	2.6	7
56	Accurate Modeling of PLL With Frequency-Adaptive Prefilter: On the Positive Feedback Effect. IEEE Transactions on Power Electronics, 2022, 37, 3747-3752.	5.4	7
57	A Novel Zero-Voltage-Switching PWM Full-Bridge Converter. , 2007, , .		6
58	Novel DC–AC inverter based on phaseâ€shift shootâ€through controlled dualâ€activeâ€bridge and highâ€frequency pulse DC link. IET Power Electronics, 2019, 12, 3842-3851.	1.5	6
59	A Multiport AC–AC–DC Converter for Soft Normally Open Point. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2146-2150.	2.2	6
60	A Three-Phase Multiplexing Arm Modular Multilevel Converter With High Power Density and Small Volume. IEEE Transactions on Power Electronics, 2022, 37, 14587-14600.	5.4	6
61	A family of bidirectional DC/DC converters suitable for asymmetrical power flow requirement. , 2013, ,		5
62	An Auxiliary Fault Identification Strategy of Flexible HVDC Grid Based on Convolutional Neural Network With Branch Structures. IEEE Access, 2020, 8, 115922-115931.	2.6	5
63	A Hybrid Resonant ZVZCS Three-Level Converter Suitable for Photovoltaic Power DC Distribution System. IEEE Access, 2020, 8, 114981-114990.	2.6	5
64	Investigation of Multiple Resonances and Stability Enhancement in Multi-Source DC Distribution Power Systems. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2022, 12, 90-97.	2.7	5
65	Design of Dry-type High-power High-frequency Transformer Based on Triangular Closed Core. , 2021, , .		5
66	Zero-Voltage-Switching PWM Three-Level Converter with Interleaved Complementary Modulation. IEEE Applied Power Electronics Conference and Exposition, 2007, , .	0.0	4
67	Hybrid one-cycle control scheme for fault-tolerant modular multilevel rectifiers. International Journal of Electronics, 2017, 104, 1483-1499.	0.9	4
68	A MMC-Based Multiport AC– <i>N</i> –DC Converter for Hybrid AC/DC Systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 3567-3571.	2.2	4
69	A Low Loss Orthogonal Decoupling Magnetic Integrated Structure for Dual Active Bridge Converter. IEEE Transactions on Power Electronics, 2022, 37, 7013-7027.	5.4	4
70	An improved control strategy for input-series and output-parallel inverter system at extreme conditions. , 2010, , .		3
71	Improved performance of a DC/DC converter for supercapacitor energy storage system. , 2013, , .		3
72	Balanced supercapacitor energy storage module based on multifunctional ISOS converter., 2014, , .		3

#	Article	IF	CITATIONS
73	Magnetic flux density analysis of series resonant converter operating in discontinuous conduction mode for highâ€voltage highâ€power applications. IET Power Electronics, 2020, 13, 4386-4394.	1.5	3
74	Hierarchical Distribution Network Topology Formulation and Dimensionality Reduction Using Homeomorphism Transformation. IEEE Access, 2022, 10, 33320-33331.	2.6	3
75	A Multiport Three-stage Power Electronic Transformer. , 2020, , .		2
76	A bidirectional threeâ€phase tripleâ€voltage LLC (T ² â€LLC) resonant converter for DC/DC stage in solid state transformer and DC transformer applications. IET Power Electronics, 2022, 15, 434-446.	1.5	2
77	A Four-Phase Interleaved Four-Switch Buck-Boost Converter with Smooth Mode Transition Strategy for Fuel Cell System. , 2021, , .		2
78	A new double frequency dimmer for lighting device. , 2013, , .		1
79	A Novel ZCS Full-Bridge PWM Converter with Simple Auxiliary Circuits. , 2018, , .		1
80	A Novel Decentralized Control Strategy for Input-Series Output-Parallel Inverter System., 2019,,.		1
81	A Multiport Power Electronic Transformer with Shared Medium-frequency Transformer., 2020, , .		1
82	A Multiport Power Electronic Transformer Based on MMC with Resonant Circuit for DC Distribution. , 2020, , .		1
83	Voltage-Sensorless Finite-Control-Set Model Predictive Control for LCL-Filtered Grid-Connected Inverters., 2021,,.		1
84	Contrastive Analysis of Stability of Cascade System With Voltage Source Converter., 2021,,.		1
85	Analysis and Design of Bidirectional Three-phase Triple-Voltage LLC (T ² -LLC) Resonant Converter for Solid-State Transformer Application., 2021,,.		1
86	Zero-Voltage-Switching PWM Hybrid Full-Bridge Three-Level Converter with Clamping Diodes. , 0, , .		0
87	Current-Doubler-Rectifier ZVS PWM Hybrid Full-Bridge Three-Level Converter. , 0, , .		0
88	Impact of the wire tightness degree on circular pad with different coil size in IPT system. , 2017, , .		0
89	Three-Level ZCS Converter Suitable for Medium Voltage DC Distribution Network. , 2018, , .		О
90	A Hybrid Resonant three-level ZCS Converter Suitable for Medium Voltage Dc Distribution Network. , 2020, , .		0

#	Article	IF	Citations
91	Analysis and Control of Battery Energy Storage System Based on Hybrid Active Third-Harmonic Current Injection Converter. Energies, 2021, 14, 3140.	1.6	0
92	A Voltage Control of Energy Storage Mobile Shelter Under Multi Energy Access. , 2021, , .		O
93	Analysis for Reduced-order Model of a Typical Photovoltaic-battery Hybrid Power System. , 2021, , .		O
94	Large signal stability analysis of multi-voltage level DC system. , 2021, , .		0
95	Decoupled Vector Control of PMSM Based on Uncertainty and Disturbance Estimator., 2020,,.		0
96	250kW High-Frequency Transformer Design and Verification for MVDC Collection System for Renewable Energy Resources. , 2020, , .		0
97	A Design Method of Energy Storage System Based on Cascaded Topology. , 2020, , .		0
98	Practical Design of A Dry-type 200kVA 10kHz Transformer With Nanocristalline Core. , 2021, , .		0
99	An AC Fault Ride Through Method for MMC-HVDC Connecting to Renewable Plants Including Large DC Inductors. , 2021, , .		O