Ting-Ting Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3274253/publications.pdf Version: 2024-02-01

TING-TING W/H

#	Article	IF	CITATIONS
1	Reprogramming of nucleotide metabolism by interferon confers dependence on the replication stress response pathway in pancreatic cancer cells. Cell Reports, 2022, 38, 110236.	2.9	14
2	Purine nucleoside phosphorylase enables dual metabolic checkpoints that prevent T cell immunodeficiency and TLR7-associated autoimmunity. Journal of Clinical Investigation, 2022, 132, .	3.9	12
3	Inhibition of Host Gene Expression by KSHV: Sabotaging mRNA Stability and Nuclear Export. Frontiers in Cellular and Infection Microbiology, 2021, 11, 648055.	1.8	6
4	Deletion of immune evasion genes provides an effective vaccine design for tumor-associated herpesviruses. Npj Vaccines, 2020, 5, 102.	2.9	8
5	Relationship between alcohol use, blood pressure and hypertension: an association study and a Mendelian randomisation study. Journal of Epidemiology and Community Health, 2019, 73, 796-801.	2.0	25
6	Increased risk for T cell autoreactivity to ß-cell antigens in the mice expressing the Avy obesity-associated gene. Scientific Reports, 2019, 9, 4269.	1.6	1
7	The Ca2+ sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum. Nature Immunology, 2019, 20, 152-162.	7.0	228
8	High-Throughput Fitness Profiling of Zika Virus E Protein Reveals Different Roles for Glycosylation during Infection of Mammalian and Mosquito Cells. IScience, 2018, 1, 97-111.	1.9	29
9	Structure and mutagenesis reveal essential capsid protein interactions for KSHV replication. Nature, 2018, 553, 521-525.	13.7	44
10	Genome-wide identification of interferon-sensitive mutations enables influenza vaccine design. Science, 2018, 359, 290-296.	6.0	64
11	Proteomics of Bronchoalveolar Lavage Fluid Reveals a Lung Oxidative Stress Response in Murine Herpesvirus-68 Infection. Viruses, 2018, 10, 670.	1.5	3
12	Systematic identification of anti-interferon function on hepatitis C virus genome reveals p7 as an immune evasion protein. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2018-2023.	3.3	29
13	Virus-Like Vesicles of Kaposi's Sarcoma-Associated Herpesvirus Activate Lytic Replication by Triggering Differentiation Signaling. Journal of Virology, 2017, 91, .	1.5	17
14	Quantifying perinatal transmission of Hepatitis B viral quasispecies by tag linkage deep sequencing. Scientific Reports, 2017, 7, 10168.	1.6	6
15	Effects of Mutations on Replicative Fitness and Major Histocompatibility Complex Class I Binding Affinity Are Among the Determinants Underlying Cytotoxic-T-Lymphocyte Escape of HIV-1 Gag Epitopes. MBio, 2017, 8, .	1.8	17
16	A Herpesvirus Protein Selectively Inhibits Cellular mRNA Nuclear Export. Cell Host and Microbe, 2016, 20, 642-653.	5.1	40
17	Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis. MBio, 2016, 7, .	1.8	11
18	Coupling high-throughput genetics with phylogenetic information reveals an epistatic interaction on the influenza A virus M segment. BMC Genomics, 2016, 17, 46.	1.2	24

TING-TING WU

#	Article	IF	CITATIONS
19	M1 of Murine Gamma-Herpesvirus 68 Induces Endoplasmic Reticulum Chaperone Production. Scientific Reports, 2015, 5, 17228.	1.6	4
20	Functional Constraint Profiling of a Viral Protein Reveals Discordance of Evolutionary Conservation and Functionality. PLoS Genetics, 2015, 11, e1005310.	1.5	50
21	Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling. Cell, 2015, 163, 1716-1729.	13.5	322
22	CryoEM and mutagenesis reveal that the smallest capsid protein cements and stabilizes Kaposi's sarcoma-associated herpesvirus capsid. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E649-56.	3.3	27
23	High-resolution genetic profile of viral genomes: why it matters. Current Opinion in Virology, 2015, 14, 62-70.	2.6	13
24	RIOK3 Is an Adaptor Protein Required for IRF3-Mediated Antiviral Type I Interferon Production. Journal of Virology, 2014, 88, 7987-7997.	1.5	46
25	High-Throughput Identification of Loss-of-Function Mutations for Anti-Interferon Activity in the Influenza A Virus NS Segment. Journal of Virology, 2014, 88, 10157-10164.	1.5	33
26	A Quantitative High-Resolution Genetic Profile Rapidly Identifies Sequence Determinants of Hepatitis C Viral Fitness and Drug Sensitivity. PLoS Pathogens, 2014, 10, e1004064.	2.1	66
27	A Comprehensive Functional Map of the Hepatitis C Virus Genome Provides a Resource for Probing Viral Proteins. MBio, 2014, 5, e01469-14.	1.8	16
28	High-throughput profiling of point mutations across the HIV-1 genome. Retrovirology, 2014, 11, 124.	0.9	35
29	Kaposi's Sarcoma-Associated Herpesvirus ORF18 and ORF30 Are Essential for Late Gene Expression during Lytic Replication. Journal of Virology, 2014, 88, 11369-11382.	1.5	40
30	Unconventional Sequence Requirement for Viral Late Gene Core Promoters of Murine Gammaherpesvirus 68. Journal of Virology, 2014, 88, 3411-3422.	1.5	35
31	Short Communication: HIV-1 Gag Genetic Variation in a Single Acutely Infected Participant Defined by High-Resolution Deep Sequencing. AIDS Research and Human Retroviruses, 2014, 30, 806-811.	0.5	2
32	Organization of Capsid-Associated Tegument Components in Kaposi's Sarcoma-Associated Herpesvirus. Journal of Virology, 2014, 88, 12694-12702.	1.5	49
33	High-throughput profiling of influenza A virus hemagglutinin gene at single-nucleotide resolution. Scientific Reports, 2014, 4, 4942.	1.6	147
34	HIV-1 Quasispecies Delineation by Tag Linkage Deep Sequencing. PLoS ONE, 2014, 9, e97505.	1.1	25
35	Systematic Identification of H274Y Compensatory Mutations in Influenza A Virus Neuraminidase by High-Throughput Screening. Journal of Virology, 2013, 87, 1193-1199.	1.5	61
36	Importance of Antibody in Virus Infection and Vaccine-Mediated Protection by a Latency-Deficient Recombinant Murine Î ³ -Herpesvirus-68. Journal of Immunology, 2012, 188, 1049-1056.	0.4	10

TING-TING WU

#	Article	IF	CITATIONS
37	Vaccine prospect of Kaposi sarcoma-associated herpesvirus. Current Opinion in Virology, 2012, 2, 482-488.	2.6	30
38	An Integrated Approach to Elucidate the Intra-Viral and Viral-Cellular Protein Interaction Networks of a Gamma-Herpesvirus. PLoS Pathogens, 2011, 7, e1002297.	2.1	37
39	The Anti-interferon Activity of Conserved Viral dUTPase ORF54 is Essential for an Effective MHV-68 Infection. PLoS Pathogens, 2011, 7, e1002292.	2.1	46
40	Construction and Characterization of an Infectious Murine Gammaherpesivrus-68 Bacterial Artificial Chromosome. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-11.	3.0	14
41	Prospects of a novel vaccination strategy for human gamma-herpesviruses. Immunologic Research, 2010, 48, 122-146.	1.3	16
42	Two Kinetic Patterns of Epitope-Specific CD8 T-Cell Responses following Murine Gammaherpesvirus 68 Infection. Journal of Virology, 2010, 84, 2881-2892.	1.5	43
43	Induction of Protective Immunity against Murine Gammaherpesvirus 68 Infection in the Absence of Viral Latency. Journal of Virology, 2010, 84, 2453-2465.	1.5	32
44	ORF30 and ORF34 Are Essential for Expression of Late Genes in Murine Gammaherpesvirus 68. Journal of Virology, 2009, 83, 2265-2273.	1.5	47
45	Conserved Herpesviral Kinase Promotes Viral Persistence by Inhibiting the IRF-3-Mediated Type I Interferon Response. Cell Host and Microbe, 2009, 5, 166-178.	5.1	133
46	Persistent Gammaherpesvirus Replication and Dynamic Interaction with the Host In Vivo. Journal of Virology, 2008, 82, 12498-12509.	1.5	77
47	A Replication-Deficient Murine γ-Herpesvirus Blocked in Late Viral Gene Expression Can Establish Latency and Elicit Protective Cellular Immunity. Journal of Immunology, 2007, 179, 8392-8402.	0.4	23
48	A Novel Inhibitory Mechanism of Mitochondrion-Dependent Apoptosis by a Herpesviral Protein. PLoS Pathogens, 2007, 3, e174.	2.1	31
49	Murine Gammaherpesvirus 68 ORF52 Encodes a Tegument Protein Required for Virion Morphogenesis in the Cytoplasm. Journal of Virology, 2007, 81, 10137-10150.	1.5	38
50	Murine Gammaherpesvirus 68 Open Reading Frame 24 Is Required for Late Gene Expression after DNA Replication. Journal of Virology, 2007, 81, 6761-6764.	1.5	39
51	ORF18 Is a Transfactor That Is Essential for Late Gene Transcription of a Gammaherpesvirus. Journal of Virology, 2006, 80, 9730-9740.	1.5	50
52	Identification of viral genes essential for replication of murine Â-herpesvirus 68 using signature-tagged mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3805-3810.	3.3	131
53	Murine Gammaherpesvirus 68 Open Reading Frame 45 Plays an Essential Role during the Immediate-Early Phase of Viral Replication. Journal of Virology, 2005, 79, 5129-5141.	1.5	41
54	Murine Gammaherpesvirus 68 Open Reading Frame 31 Is Required for Viral Replication. Journal of Virology, 2004, 78, 6610-6620.	1.5	49

TING-TING WU

#	Article	IF	CITATIONS
55	Generation of a Latency-Deficient Gammaherpesvirus That Is Protective against Secondary Infection. Journal of Virology, 2004, 78, 9215-9223.	1.5	40
56	NF-κB Inhibits Gammaherpesvirus Lytic Replication. Journal of Virology, 2003, 77, 8532-8540.	1.5	214
57	Identificationof Proteins Associated with Murine Gammaherpesvirus68Virions. Journal of Virology, 2003, 77, 13425-13432.	1.5	95
58	COX-2 Induction during Murine Gammaherpesvirus 68 Infection Leads to Enhancement of Viral Gene Expression. Journal of Virology, 2003, 77, 12753-12763.	1.5	38
59	Transcription Program of Murine Gammaherpesvirus 68. Journal of Virology, 2003, 77, 10488-10503.	1.5	114
60	Function of Rta Is Essential for Lytic Replication of Murine Gammaherpesvirus 68. Journal of Virology, 2001, 75, 9262-9273.	1.5	80
61	Rta of Murine Gammaherpesvirus 68 Reactivates the Complete Lytic Cycle from Latency. Journal of Virology, 2000, 74, 3659-3667.	1.5	141