Shaoling Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3274245/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genome of the pear (<i>Pyrus bretschneideri</i> Rehd.). Genome Research, 2013, 23, 396-408.	2.4	832
2	Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biology, 2019, 20, 38.	3.8	542
3	Mapâ€based cloning of the pear gene <i><scp>MYB</scp>114</i> identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant Journal, 2017, 92, 437-451.	2.8	279
4	Spermidine oxidase-derived H2O2 regulates pollen plasma membrane hyperpolarization-activated Ca2+-permeable channels and pollen tube growth. Plant Journal, 2010, 63, 1042-1053.	2.8	182
5	Diversification and independent domestication of Asian and European pears. Genome Biology, 2018, 19, 77.	3.8	149
6	Anatomy, ultrastructure and lignin distribution of stone cells in two Pyrus species. Plant Science, 2009, 176, 413-419.	1.7	138
7	Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC Plant Biology, 2015, 15, 12.	1.6	138
8	Identification of miRNAs involved in pear fruit development and quality. BMC Genomics, 2014, 15, 953.	1.2	102
9	Phosphatidic Acid Counteracts S-RNase Signaling in Pollen by Stabilizing the Actin Cytoskeleton. Plant Cell, 2018, 30, 1023-1039.	3.1	101
10	A novel MYB transcription factor regulates ascorbic acid synthesis and affects cold tolerance. Plant, Cell and Environment, 2019, 42, 832-845.	2.8	98
11	ICE1 of Pyrus ussuriensis functions in cold tolerance by enhancing PuDREBa transcriptional levels through interacting with PuHHP1. Scientific Reports, 2015, 5, 17620.	1.6	94
12	A WRKY transcription factor PbrWRKY53 from <i>Pyrus betulaefolia</i> is involved in drought tolerance and AsA accumulation. Plant Biotechnology Journal, 2019, 17, 1770-1787.	4.1	93
13	Evaluation of the volatile profile of 33 Pyrus ussuriensis cultivars by HS-SPME with GC–MS. Food Chemistry, 2012, 134, 2367-2382.	4.2	83
14	Genome-wide analysis of WRKY transcription factors in white pear (Pyrus bretschneideri) reveals evolution and patterns under drought stress. BMC Genomics, 2015, 16, 1104.	1.2	76
15	Different Modes of Gene Duplication Show Divergent Evolutionary Patterns and Contribute Differently to the Expansion of Gene Families Involved in Important Fruit Traits in Pear (Pyrus) Tj ETQq1 1 0.78	43141.rgBT ,	Ovædock 10
16	Genome-wide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Rosaceae genomes. BMC Genomics, 2017, 18, 763.	1.2	62
17	Characterization and Quantification of Polyphenols and Triterpenoids in Thinned Young Fruits of Ten Pear Varieties by UPLC-Q TRAP-MS/MS. Molecules, 2019, 24, 159.	1.7	62
18	The involvement of PybZIPa in light-induced anthocyanin accumulation via the activation of PyUFGT through binding to tandem G-boxes in its promoter. Horticulture Research, 2019, 6, 134.	2.9	61

#	Article	IF	CITATIONS
19	The bracteatus pineapple genome and domestication of clonally propagated crops. Nature Genetics, 2019, 51, 1549-1558.	9.4	60
20	Distinct transcriptome profiles reveal gene expression patterns during fruit development and maturation in five main cultivated species of pear (Pyrus L.). Scientific Reports, 2016, 6, 28130.	1.6	59
21	Self-Incompatibility in <i>Papaver rhoeas</i> Activates Nonspecific Cation Conductance Permeable to Ca2+ and K+ Â. Plant Physiology, 2011, 155, 963-973.	2.3	58
22	Unbiased subgenome evolution following a recent whole-genome duplication in pear (Pyrus) Tj ETQq0 0 0 rgBT /(Dverlock 1 2.9	0
23	Transcriptome profiling reveals differential gene expression in proanthocyanidin biosynthesis associated with red/green skin color mutant of pear (Pyrus communis L.). Frontiers in Plant Science, 2015, 6, 795.	1.7	53
24	Genomic characterization, phylogenetic comparison and differential expression of the cyclic nucleotide-gated channels gene family in pear (Pyrus bretchneideri Rehd.). Genomics, 2015, 105, 39-52.	1.3	52
25	Chemical Composition and Crystal Morphology of Epicuticular Wax in Mature Fruits of 35 Pear (Pyrus) Tj ETQq1	1 0.78431 1.7	4 rgBT /Over
26	The β-amylase PbrBAM3 from pear (Pyrus betulaefolia) regulates soluble sugar accumulation and ROS homeostasis in response to cold stress. Plant Science, 2019, 287, 110184.	1.7	52
27	Chemical composition, crystal morphology and key gene expression of cuticular waxes of Asian pears at harvest and after storage. Postharvest Biology and Technology, 2017, 132, 71-80.	2.9	51
28	Characterization of the lipoxygenase (LOX) gene family in the Chinese white pear (Pyrus) Tj ETQq0 0 0 rgBT /Ove	rlock 10 Ti 1.2	f 50 382 Td (49
29	Identifying genetic diversity and a preliminary core collection of Pyrus pyrifolia cultivars by a genome-wide set of SSR markers. Scientia Horticulturae, 2014, 167, 5-16.	1.7	48
30	Development of an integrated 200K <scp>SNP</scp> genotyping array and application for genetic mapping, genome assembly improvement and genome wide association studies in pear (<i>Pyrus</i>). Plant Biotechnology Journal, 2019, 17, 1582-1594.	4.1	46
31	The effect of temperature, polyamines and polyamine synthesis inhibitor on in vitro pollen germination and pollen tube growth of Prunus mume. Scientia Horticulturae, 2004, 99, 289-299.	1.7	45
32	Genetic diversity and population structure of pear (Pyrus spp.) collections revealed by a set of core genome-wide SSR markers. Tree Genetics and Genomes, 2015, 11, 1.	0.6	45
33	ViewBS: a powerful toolkit for visualization of high-throughput bisulfite sequencing data. Bioinformatics, 2018, 34, 708-709.	1.8	44
34	Genome-wide association studies provide insights into the genetic determination of fruit traits of pear. Nature Communications, 2021, 12, 1144.	5.8	44
35	Construction of a high-density genetic linkage map in pear (Pyrus communis×Pyrus pyrifolia nakai) using SSRs and SNPs developed by SLAF-seq. Scientia Horticulturae, 2017, 218, 198-204.	1.7	42

³⁶Evolution of the Aroma Volatiles of Pear Fruits Supplemented with Fatty Acid Metabolic Precursors.
Molecules, 2014, 19, 20183-20196.1.741

#	Article	IF	CITATIONS
37	The mining and evolutionary investigation of AP2/ERF genes in pear (Pyrus). BMC Plant Biology, 2018, 18, 46.	1.6	41
38	Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri). BMC Plant Biology, 2019, 19, 161.	1.6	41
39	Apoplastic calmodulin promotes self-incompatibility pollen tube growth by enhancing calcium influx and reactive oxygen species concentration in Pyrus pyrifolia. Plant Cell Reports, 2014, 33, 255-263.	2.8	40
40	Gene-expression profile of developing pollen tube of Pyrus bretschneideri. Gene Expression Patterns, 2016, 20, 11-21.	0.3	40
41	Molecular Determinants and Mechanisms of Gametophytic Self-Incompatibility in Fruit Trees of Rosaceae. Critical Reviews in Plant Sciences, 2013, 32, 53-68.	2.7	39
42	Genome-wide identification of PbrbHLH family genes, and expression analysis in response to drought and cold stresses in pear (Pyrus bretschneideri). BMC Plant Biology, 2021, 21, 86.	1.6	39
43	Genome-wide identification of the <i>MADS-box</i> transcription factor family in pear (<i>Pyrus) Tj ETQq1 1 0.78</i>	84314 rgB⁻ 0.9	T /gyerlock 1
44	Characterization of the glutathione S-transferase (GST) gene family in Pyrus bretschneideri and their expression pattern upon superficial scald development. Plant Growth Regulation, 2018, 86, 211-222.	1.8	36
45	Identification and testing of reference genes for gene expression analysis in pollen of Pyrus bretschneideri. Scientia Horticulturae, 2015, 190, 43-56.	1.7	34
46	The gene <i>PbTMT4</i> from pear (<i>Pyrus bretschneideri</i>) mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit. Physiologia Plantarum, 2018, 164, 307-319.	2.6	33
47	Physiological and Nutritional Responses of Pear Seedlings to Nitrate Concentrations. Frontiers in Plant Science, 2018, 9, 1679.	1.7	33
48	Comparative Transcriptomic Analysis Provides Insight into the Domestication and Improvement of Pear (<i>P. pyrifolia</i>) Fruit. Plant Physiology, 2019, 180, 435-452.	2.3	33
49	Identifying the candidate genes involved in the calyx abscission process of 'Kuerlexiangli' (Pyrus) Tj ETQq1 1	0.784314 1.2	rgBT /Overlo
50	Molecular cloning and expression analysis of a gene for sucrose transporter from pear (Pyrus) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 222
51	Genome-wide identification and comparative analysis of the cation proton antiporters family in pear and four other Rosaceae species. Molecular Genetics and Genomics, 2016, 291, 1727-1742.	1.0	32
52	Transcriptome and phytohormone analysis reveals a comprehensive phytohormone and pathogen defence response in pear self-/cross-pollination. Plant Cell Reports, 2017, 36, 1785-1799.	2.8	32
53	Comparative analysis of the volatile organic compounds in mature fruits of 12 Occidental pear (Pyrus) Tj ETQq1	1 0.78431 1.7	.4 rgBT /Over
54	Identification of hexokinase family members in pear (Pyrus × bretschneideri) and functional exploration of PbHXK1 in modulating sugar content and plant growth. Gene, 2019, 711, 143932.	1.0	32

#	ŧ	Article	IF	CITATIONS
5	55	Investigations into the production of volatile compounds in Korla fragrant pears (Pyrus) Tj ETQq1 1 0.784314 rgBT	-/Overlock 4.2	≀ <mark>10</mark> Tf 500
5	56	<i>In vitro</i> antifungal activity and mode of action of selected polyphenolic antioxidants on <i>Botrytis cinerea</i> . Archives of Phytopathology and Plant Protection, 2010, 43, 1564-1578.	0.6	30
5	57	Soil chemical properties and geographical distance exerted effects on arbuscular mycorrhizal fungal community composition in pear orchards in Jiangsu Province, China. Applied Soil Ecology, 2019, 142, 18-24.	2.1	30
5	58	A WRKY transcription factor PbWRKY40 from Pyrus betulaefolia functions positively in salt tolerance and modulating organic acid accumulation by regulating PbVHA-B1 expression. Environmental and Experimental Botany, 2022, 196, 104782.	2.0	30
5	59	Genome-wide analysis of polygalacturonase gene family from pear genome and identification of the member involved in pear softening. BMC Plant Biology, 2019, 19, 587.	1.6	29
6	50	Integrated high-density consensus genetic map of <i>Pyrus</i> and anchoring of the †Bartlett' v1.0 (<i>Pyrus communis</i>) genome. DNA Research, 2017, 24, dsw063.	1.5	28
6	51	Single-pollen-cell sequencing for gamete-based phased diploid genome assembly in plants. Genome Research, 2019, 29, 1889-1899.	2.4	28
6	52	Calcium treatments promote the aroma volatiles emission of pear (Pyrus ussuriensis â€~Nanguoli') fruit during post-harvest ripening process. Scientia Horticulturae, 2017, 215, 102-111.	1.7	27
6	53	Characterization of the pectin methyl-esterase gene family and its function in controlling pollen tube growth in pear (Pyrus bretschneideri). Genomics, 2020, 112, 2467-2477.	1.3	27
6	54	Overexpression of sugar transporter gene PbSWEET4 of pear causes sugar reduce and early senescence in leaves. Gene, 2020, 743, 144582.	1.0	27
6	55	Fast loading ester fluorescent Ca2+ and pH indicators into pollen of Pyrus pyrifolia. Journal of Plant Research, 2012, 125, 185-195.	1.2	26
6	56	Comparative Genomic Analysis Reveals Multiple Long Terminal Repeats, Lineage-Specific Amplification, and Frequent Interelement Recombination for Cassandra Retrotransposon in Pear (Pyrus) Tj ETQq0 0 0 rgBT /Over	louate 10 Tf	50 297 Td
6	57	Genome-wide identification and functional analysis of U-box E3 ubiquitin ligases gene family related to drought stress response in Chinese white pear (Pyrus bretschneideri). BMC Plant Biology, 2021, 21, 235.	1.6	26
6	58	Evolution, expression analysis, and functional verification of Catharanthus roseus RLK1-like kinase (CrRLK1L) family proteins in pear (Pyrus bretchneideri). Genomics, 2017, 109, 290-301.	1.3	25
6	59	Characterization of the Genes Involved in Malic Acid Metabolism from Pear Fruit and Their Expression Profile after Postharvest 1-MCP/Ethrel Treatment. Journal of Agricultural and Food Chemistry, 2018, 66, 8772-8782.	2.4	25
7	0	Genome-wide identification, evolution, and expression analysis of the <i>KT/HAK/KUP</i> family in pear. Genome, 2018, 61, 755-765.	0.9	25
7	′1	The Variation of Stone Cell Content in 236 Germplasms of Sand Pear (Pyrus pyrifolia) and Identification of Related Candidate Genes. Horticultural Plant Journal, 2021, 7, 108-116.	2.3	25
7	2	cAMP activates hyperpolarization-activated Ca2+ channels in the pollen of Pyrus pyrifolia. Plant Cell Reports, 2011, 30, 1193-1200.	2.8	23

#	Article	IF	CITATIONS
73	Genome-wide analysis and characterization of molecular evolution of the HCT gene family in pear (Pyrus bretschneideri). Plant Systematics and Evolution, 2017, 303, 71-90.	0.3	23
74	Genome-wide identification and expression analysis of the bZIP transcription factors, and functional analysis in response to drought and cold stresses in pear (Pyrus breschneideri). BMC Plant Biology, 2021, 21, 583.	1.6	23
75	Transcriptomic and evolutionary analyses of white pear (Pyrus bretschneideri) β-amylase genes reveals their importance for cold and drought stress responses. Gene, 2019, 689, 102-113.	1.0	22
76	Genome-wide comparative analysis of the BAHD superfamily in seven Rosaceae species and expression analysis in pear (Pyrus bretschneideri). BMC Plant Biology, 2020, 20, 14.	1.6	22
77	TARE1, a Mutated Copia-Like LTR Retrotransposon Followed by Recent Massive Amplification in Tomato. PLoS ONE, 2013, 8, e68587.	1.1	20
78	Genome-wide identification and expression analysis of genes associated with peach (Prunus persica) fruit ripening. Scientia Horticulturae, 2019, 246, 317-327.	1.7	20
79	Genome-wide identification and comparative analysis of the ADH gene family in Chinese white pear (Pyrus bretschneideri) and other Rosaceae species. Genomics, 2020, 112, 3484-3496.	1.3	20
80	Timing of meristem initiation and maintenance determines the morphology of fern gametophytes. Journal of Experimental Botany, 2021, 72, 6990-7001.	2.4	20
81	PbMC1a/1b regulates lignification during stone cell development in pear (Pyrus bretschneideri) fruit. Horticulture Research, 2020, 7, 59.	2.9	20
82	Exogenous Calcium Improved Resistance to <i>Botryosphaeria dothidea</i> by Increasing Autophagy Activity and Salicylic Acid Level in Pear. Molecular Plant-Microbe Interactions, 2020, 33, 1150-1160.	1.4	20
83	Characterization of the Auxin Efflux Transporter PIN Proteins in Pear. Plants, 2020, 9, 349.	1.6	19
84	Mitochondrial dysfunction mediated by cytoplasmic acidification results in pollen tube growth cessation in <i>Pyrus pyrifolia</i> . Physiologia Plantarum, 2015, 153, 603-615.	2.6	18
85	Expansion and evolutionary patterns of cysteine-rich peptides in plants. BMC Genomics, 2017, 18, 610.	1.2	18
86	Characterization of Dof family in Pyrus bretschneideri and role of PbDof9.2 in flowering time regulation. Genomics, 2020, 112, 712-720.	1.3	18
87	Mining and evolution analysis of lateral organ boundaries domain (LBD) genes in Chinese white pear (Pyrus bretschneideri). BMC Genomics, 2020, 21, 644.	1.2	18
88	Longâ€chain base phosphates modulate pollen tube growth via channelâ€mediated influx of calcium. Plant Journal, 2014, 79, 507-516.	2.8	17
89	Cryptochrome-mediated blue-light signal contributes to lignin biosynthesis in stone cells in pear fruit. Plant Science, 2022, 318, 111211.	1.7	17
90	Genome-wide Annotation and Comparative Analysis of Long Terminal Repeat Retrotransposons between Pear Species of P. bretschneideri and P. Communis. Scientific Reports, 2015, 5, 17644.	1.6	16

#	Article	IF	CITATIONS
91	Evolutionary and Expression Analysis Provides Evidence for the Plant Glutamate-like Receptors Family is Involved in Woody Growth-related Function. Scientific Reports, 2016, 6, 32013.	1.6	16
92	Overexpression of PbrNHX2 gene, a Na+/H+ antiporter gene isolated from Pyrus betulaefolia, confers enhanced tolerance to salt stress via modulating ROS levels. Plant Science, 2019, 285, 14-25.	1.7	16
93	Transcriptome profiling reveals the candidate genes associated with aroma metabolites and emission of pear (Pyrus ussuriensis cv.). Scientia Horticulturae, 2016, 206, 33-42.	1.7	15
94	Dynamic transcriptome analysis of root nitrate starvation and re-supply provides insights into nitrogen metabolism in pear (Pyrus bretschneideri). Plant Science, 2018, 277, 322-333.	1.7	15
95	Transcriptomic and Gas Chromatography–Mass Spectrometry Metabolomic Profiling Analysis of the Epidermis Provides Insights into Cuticular Wax Regulation in Developing â€~Yuluxiang' Pear Fruit. Journal of Agricultural and Food Chemistry, 2019, 67, 8319-8331.	2.4	15
96	Genome-wide identification, expression and functional analysis of the phosphofructokinase gene family in Chinese white pear (Pyrus bretschneideri). Gene, 2019, 702, 133-142.	1.0	15
97	Comparison of multiple algorithms to reliably detect structural variants in pears. BMC Genomics, 2020, 21, 61.	1.2	15
98	Phylogenetic and expression analysis of the magnesium transporter family in pear, and functional verification of <i>PbrMGT7</i> in pear pollen. Journal of Horticultural Science and Biotechnology, 2018, 93, 51-63.	0.9	14
99	Identification of Shaker K+ channel family members in Rosaceae and a functional exploration of PbrKAT1. Planta, 2019, 250, 1911-1925.	1.6	14
100	Comparative analysis of the P-type ATPase gene family in seven Rosaceae species and an expression analysis in pear (Pyrus bretschneideri Rehd.). Genomics, 2020, 112, 2550-2563.	1.3	14
101	Genome-wide Identification and Evolution of the PP2C Gene Family in Eight Rosaceae Species and Expression Analysis Under Stress in Pyrus bretschneideri. Frontiers in Genetics, 2021, 12, 770014.	1.1	14
102	Variation of organic acids in mature fruits of 193 pear (Pyrus spp.) cultivars. Journal of Food Composition and Analysis, 2022, 109, 104483.	1.9	14
103	Identification and functional characterization of SOC1-like genes in Pyrus bretschneideri. Genomics, 2020, 112, 1622-1632.	1.3	13
104	Transcriptome Analysis of Low- and High-Sucrose Pear Cultivars Identifies Key Regulators of Sucrose Biosynthesis in Fruits. Plant and Cell Physiology, 2020, 61, 1493-1506.	1.5	13
105	Characterization of the pectin methylesterase inhibitor gene family in Rosaceae and role of PbrPMEI23/39/41 in methylesterified pectin distribution in pear pollen tube. Planta, 2021, 253, 118.	1.6	13
106	Cell growth dynamics in two types of apical meristems in fern gametophytes. Plant Journal, 2022, , .	2.8	13
107	Genome-wide identification and expression analysis of the <i>OSCA</i> gene family in <i>Pyrus bretschneideri</i> . Canadian Journal of Plant Science, 2018, 98, 918-929.	0.3	12
108	Establishment of efficient callus genetic transformation system for Pyrus armeniacaefolia. Scientia Horticulturae, 2021, 289, 110429.	1.7	12

#	Article	IF	CITATIONS
109	Overexpression of PbDHAR2 from Pyrus sinkiangensis in Transgenic Tomato Confers Enhanced Tolerance to Salt and Chilling Stresses. Hortscience: A Publication of the American Society for Hortcultural Science, 2015, 50, 789-796.	0.5	12
110	Cinnamate-4-Hydroxylase Gene Is Involved in the Step of Lignin Biosynthesis in Chinese White Pear. Journal of the American Society for Horticultural Science, 2015, 140, 573-579.	0.5	12
111	PbrRALF2-elicited reactive oxygen species signaling is mediated by the PbrCrRLK1L13-PbrMPK18 module in pear pollen tubes. Horticulture Research, 2021, 8, 222.	2.9	12
112	Pear genetics: Recent advances, new prospects, and a roadmap for the future. Horticulture Research, 2022, 9, .	2.9	12
113	Molecular characterization and expression pattern of sorbitol transporter gene <i>PbSOT2</i> in Pear (<i>Pyrus bretschneideri</i> Rehd.) fruit. Canadian Journal of Plant Science, 2016, 96, 128-137.	0.3	11
114	Characterization of genes involved in pear ascorbic acid metabolism and their response to bagging treatment during †Yali' fruit development. Scientia Horticulturae, 2021, 285, 110178.	1.7	11
115	Changes in germinability, lipid peroxidation, and antioxidant enzyme activities in pear stock (Pyrus) Tj ETQq1 1 0 33, 2035-2040.	.784314 r 1.0	gBT /Overloc 10
116	Genome-wide survey and expression analysis of the SLAC/SLAH gene family in pear (Pyrus) Tj ETQq0 0 0 rgBT /Ov	verlock 10 1.3	Tf 50 462 Td 10
117	Metabolome analysis reveals important compounds related to dwarfing effect of interstock on scion in pear. Annals of Applied Biology, 2021, 179, 108-122.	1.3	10
118	Identification and characterization of invertase family genes reveal their roles in vacuolar sucrose metabolism during Pyrus bretschneideri Rehd. fruit development. Genomics, 2021, 113, 1087-1097.	1.3	10
119	PbCSE1 promotes lignification during stone cell development in pear (Pyrus bretschneideri) fruit. Scientific Reports, 2021, 11, 9450.	1.6	10
120	Genome-wide identification and expression analysis of the pear autophagy-related gene PbrATG8 and functional verification of PbrATG8c in Pyrus bretschneideri Rehd. Planta, 2021, 253, 32.	1.6	10
121	Pervasive genome duplications across the plant tree of life and their links to major evolutionary innovations and transitions. Computational and Structural Biotechnology Journal, 2022, 20, 3248-3256.	1.9	10
122	Evaluation of new IRAP markers of pear and their potential application in differentiating bud sports and other Rosaceae species. Tree Genetics and Genomes, 2015, 11, 1.	0.6	9
123	A MADS-box transcription factor of †Kuerlexiangli'(Pyrus sinkiangensis Yu) PsJOINTLESS gene functions in floral organ abscission. Gene, 2018, 642, 163-171.	1.0	9
124	The Peptide PbrPSK2 From Phytosulfokine Family Induces Reactive Oxygen Species (ROS) Production to Regulate Pear Pollen Tube Growth. Frontiers in Plant Science, 2020, 11, 601993.	1.7	9
125	Genome-wide identification of lysin motif containing protein family genes in eight rosaceae species, and expression analysis in response to pathogenic fungus Botryosphaeria dothidea in Chinese white pear. BMC Genomics, 2020, 21, 612.	1.2	9
126	Pear metal transport protein PbMTP8.1 confers manganese tolerance when expressed in yeast and Arabidopsis thaliana. Ecotoxicology and Environmental Safety, 2021, 208, 111687.	2.9	9

#	Article	IF	CITATIONS
127	Investigation of proline in superficial scald development during low temperature storage of â€~Dangshansuli' pear fruit. Postharvest Biology and Technology, 2021, 181, 111643.	2.9	9
128	Influence of endogenous and exogenous RNases on the variation of pollen cytosolic-free Ca2+ in Pyrus serotina Rehd. Acta Physiologiae Plantarum, 2008, 30, 233-241.	1.0	8
129	Exogenous Melatonin Improves Pear Resistance to <i>Botryosphaeria dothidea</i> by Increasing Autophagic Activity and Sugar/Organic Acid Levels. Phytopathology, 2022, 112, 1335-1344.	1.1	8
130	PbrROP1/2-elicited imbalance of cellulose deposition is mediated by a CrRLK1L-ROPGEF module in the pollen tube of <i>Pyrus</i> . Horticulture Research, 2022, 9, .	2.9	8
131	Genome-wide identification and comparative analysis of the PYL gene family in eight Rosaceae species and expression analysis of seeds germination in pear. BMC Genomics, 2022, 23, 233.	1.2	8
132	<scp>PpybZIP43</scp> contributes to sucrose synthesis in pear fruits by activating <scp><i>PpySPS3</i></scp> expression and interacts with <scp>PpySTOP1</scp> . Physiologia Plantarum, 2022, 174, .	2.6	8
133	PbCOL8 is a clock-regulated flowering time repressor in pear. Tree Genetics and Genomes, 2017, 13, 1.	0.6	7
134	PbGLR3.3 Regulates Pollen Tube Growth in the Mediation of Ca2+ Influx in Pyrus bretschneideri. Journal of Plant Biology, 2018, 61, 217-226.	0.9	7
135	Comprehensive genomic analysis of the RNase T2 gene family in Rosaceae and expression analysis in Pyrus bretschneideri. Plant Systematics and Evolution, 2020, 306, 1.	0.3	7
136	SPLs-mediated flowering regulation and hormone biosynthesis and signaling accompany juvenile-adult phase transition in Pyrus. Scientia Horticulturae, 2020, 272, 109584.	1.7	7
137	Genome-Wide Analysis of RAV Transcription Factors and Functional Characterization of Anthocyanin-Biosynthesis-Related RAV Genes in Pear. International Journal of Molecular Sciences, 2021, 22, 5567.	1.8	7
138	PROFILE OF ANTIOXIDANT ACTIVITIES OF SELECTED STRAWBERRY GENOTYPES. Acta Horticulturae, 2009, , 551-556.	0.1	7
139	The unique evolutionary pattern of the Hydroxyproline-rich glycoproteins superfamily in Chinese white pear (Pyrus bretschneideri). BMC Plant Biology, 2018, 18, 36.	1.6	6
140	Identification and comparative analysis of the MCU gene family in pear and its functions during fruit ripening. Journal of Plant Physiology, 2018, 229, 53-62.	1.6	6
141	PbrSLAH3 is a nitrate-selective anion channel which is modulated by calcium-dependent protein kinase 32 in pear. BMC Plant Biology, 2019, 19, 190.	1.6	6
142	Phylogenetic and Expression Analyses of With-No-Lysine Kinase Genes Reveal Novel Gene Family Diversity in Fruit Trees. Horticultural Plant Journal, 2019, 5, 47-58.	2.3	6
143	Effects of palmitic acid (16:0), hexacosanoic acid (26:0), ethephon and methyl jasmonate on the cuticular wax composition, structure and expression of key gene in the fruits of three pear cultivars. Functional Plant Biology, 2020, 47, 156.	1.1	6
144	CAD Genes: Genome-Wide Identification, Evolution, and Their Contribution to Lignin Biosynthesis in Pear (Pyrus bretschneideri). Plants, 2021, 10, 1444.	1.6	6

#	Article	IF	CITATIONS
145	Network analysis reveals the co-expression of sugar and aroma genes in the Chinese white pear (Pyrus) Tj ETQq1	1 0.78431 1.0	.4 ₅ rgBT /Ove
146	Expression and evolutionary analysis of soluble inorganic pyrophosphatase gene family in pear and four other Rosaceae species. Plant Systematics and Evolution, 2020, 306, 1.	0.3	5
147	High-Resolution Microstructure Analysis of Cork Spot Disordered Pear Fruit "Akizuki―(Pyrus) Tj ETQq1 1 0.7	84314 rgE 1.7	BT_Overlock
148	Transcriptome and Resequencing Analyses Provide Insight into Differences in Organic Acid Accumulation in Two Pear Varieties. International Journal of Molecular Sciences, 2021, 22, 9622.	1.8	5
149	Revealing the early response of pear (Pyrus bretschneideri Rehd) leaves during Botryosphaeria dothideainfection by transcriptome analysis. Plant Science, 2022, 315, 111146.	1.7	5
150	The Origin and Evolution of RNase T2 Family and Gametophytic Self-incompatibility System in Plants. Genome Biology and Evolution, 2022, 14, .	1.1	5
151	Genome-wide identification and comparative evolutionary analysis of sorbitol metabolism pathway genes in four Rosaceae species and three model plants. BMC Plant Biology, 2022, 22, .	1.6	5
152	Characterization of the MAPK Gene Family and PbrMAPK13 Response to Hormone and Temperature Stresses via Different Expression Pattern in Pyrus ×bretschneideri Pollen. Journal of the American Society for Horticultural Science, 2017, 142, 163-174.	0.5	4
153	Transcriptome Analysis of Pear Leaves in Response to Calcium Treatment During <i>Botryosphaeria dothidea</i> Infection. Phytopathology, 2021, 111, 1638-1647.	1.1	4
154	Analysis of PRX Gene Family and Its Function on Cell Lignification in Pears (Pyrus bretschneideri). Plants, 2021, 10, 1874.	1.6	4
155	Identification of S-genotypes and a novel S-RNase in 84 native Chinese pear accessions. Horticultural Plant Journal, 2022, 8, 713-726.	2.3	4
156	Genome-Wide Identification and Comparative Analysis of the ASR Gene Family in the Rosaceae and Expression Analysis of PbrASRs During Fruit Development. Frontiers in Genetics, 2021, 12, 792250.	1.1	4
157	PbrCalS5, a callose synthase protein, is involved in pollen tube growth in Pyrus bretschneideri. Planta, 2022, 256, .	1.6	4
158	The activity of plasma membrane hyperpolarization-activated Ca2+ channels during pollen development of Pyrus pyrifolia. Acta Physiologiae Plantarum, 2012, 34, 969-975.	1.0	3
159	Phylogenetic and Expression Analysis of Pear Yellow Stripe-Like Transporters and Functional Verification of PbrYSL4 in Pear Pollen. Plant Molecular Biology Reporter, 2016, 34, 737-747.	1.0	3
160	PbrPOE21 inhibits pear pollen tube growth in vitro by altering apical reactive oxygen species content. Planta, 2020, 252, 43.	1.6	3
161	Candidate proteins involved in the calyx abscission process of â€~Kuerlexiangli' (Pyrus sinkiangensis Yu) identified by iTRAQ analysis. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	3
162	Study on the differences of gene expression between pear and apple wild cultivation materials based on RNA-seq technique. BMC Plant Biology, 2021, 21, 256.	1.6	3

#	Article	IF	CITATIONS
163	Identification and function analysis of fasciclin-like arabinogalactan protein family genes in pear (Pyrus bretschneideri). Plant Systematics and Evolution, 2021, 307, 1.	0.3	3
164	Genome-wide genetic diversity and IBD analysis reveals historic dissemination routes of pear in China. Tree Genetics and Genomes, 2022, 18, 1.	0.6	3
165	Multi-Omics Analysis Reveals the Dynamic Changes of RNA N6-Methyladenosine in Pear (Pyrus) Tj ETQq1 1 0.784 Microbiology, 2021, 12, 803512.	314 rgBT 1.5	/Overlock 10 3
166	Alternative splicing analysis provides insight into the domestication and improvement of pear (Pyrus) Tj ETQq0 0	0 <u>rg</u> BT /O	veglock 10 Tt
167	Identification and testing of reference genes for qRT-PCR analysis during pear fruit development. , 2022, 77, 2763-2777.		3
168	TGTT and AACA: two transcriptionally active LTR retrotransposon subfamilies with a specific LTR structure and horizontal transfer in four Rosaceae species. Mobile DNA, 2017, 8, 14.	1.3	2
169	PbrPCCP1 mediates the PbrTTS1 signaling to control pollen tube growth in pear. Plant Science, 2019, 289, 110244.	1.7	2
170	Identification of key genes related to seedlessness by genome-wide detection of structural variation and transcriptome analysis in â€~Shijiwuhe' pear. Gene, 2020, 738, 144480.	1.0	2
171	Differences in Anthocyanin Accumulation Patterns and Related Gene Expression in Two Varieties of Red Pear. Plants, 2021, 10, 626.	1.6	2
172	Cellulose accumulation mediated by <scp>PbrCSLD5</scp> , a cellulose synthaseâ€like protein, results in cessation of pollen tube growth in <i>Pyrus bretschneideri</i> . Physiologia Plantarum, 2022, 174, e13700.	2.6	2
173	Transcriptome analysis provides new ideas for studying the regulation of glucose-induced lignin biosynthesis in pear calli. BMC Plant Biology, 2022, 22, .	1.6	2
174	The Genome of Pear. Compendium of Plant Genomes, 2019, , 133-143.	0.3	1
175	Transcriptome provides potential insights into how calcium affects the formation of stone cell in Pyrus. BMC Genomics, 2021, 22, 831.	1.2	1
176	Self-incompatibility in Pear. Compendium of Plant Genomes, 2019, , 179-200.	0.3	0
177	Phylogenetic and Expression Analyses of Cullin Family Members Unveil the Role of PbCUL1.C1 in Pollen Tube Growth Underlying Non-self S-RNase in Pear. Plant Molecular Biology Reporter, 2020, 38, 601-612.	1.0	0
178	Proteomic Differential in-Gel Electrophoresis Analysis of Stigmatic and Stylar Proteins in Kiwifruit before and after Pollination. Current Proteomics, 2014, 11, 218-227.	0.1	0
179	Characterization and Functional Explorations of O-glycosylation Enzymes SECRET AGENT and SPINDLY in Pyrus bretschneideri. Journal of Plant Biology, 0, , 1.	0.9	0