
## A V Belov

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3273838/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Recognition of Geomagnetic Storm Based on Neural Network Model Estimates of Dst Indices. Journal of Computer and Systems Sciences International, 2022, 61, 54-64.                                                                  | 0.2 | 1         |
| 2  | Forbush decreases caused by paired interacting solar wind disturbances. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5897-5908.                                                                                   | 1.6 | 3         |
| 3  | Precursory Signals of Forbush Decreases Not Connected with Shock Waves. Solar Physics, 2022, 297, 1.                                                                                                                               | 1.0 | 2         |
| 4  | Features of the Behavior of Time Parameters of Forbush Decreases Associated with Different Types of Solar and Interplanetary Sources. Geomagnetism and Aeronomy, 2022, 62, 17-31.                                                  | 0.2 | 4         |
| 5  | Estimating the Transit Speed and Time of Arrival of Interplanetary Coronal Mass Ejections Using CME and Solar Flare Data. Universe, 2022, 8, 327.                                                                                  | 0.9 | 5         |
| 6  | Similarities and Differences between Forbush Decreases Associated with Streams from Coronal Holes,<br>Filament Ejections, and Ejections from Active Regions. Geomagnetism and Aeronomy, 2022, 62, 159-177.                         | 0.2 | 4         |
| 7  | On the Rigidity Spectrum of Cosmic-Ray Variations within Propagating Interplanetary Disturbances:<br>Neutron Monitor and SOHO/EPHIN Observations at â^¼1–10 GV. Astrophysical Journal, 2021, 908, 5.                               | 1.6 | 9         |
| 8  | Radial evolution of the April 2020 stealth coronal mass ejection between 0.8 and 1 AU. Astronomy and Astrophysics, 2021, 656, A1.                                                                                                  | 2.1 | 15        |
| 9  | Variations in the Cosmic Ray Flux at the End of Solar Cycle 24. Bulletin of the Russian Academy of Sciences: Physics, 2021, 85, 230-233.                                                                                           | 0.1 | 0         |
| 10 | An Unusual Decrease in the Intensity of Cosmic Rays in May 2019 during the Solar Minimum. Bulletin of<br>the Russian Academy of Sciences: Physics, 2021, 85, 588-591.                                                              | 0.1 | 0         |
| 11 | Precursory Signs of Large Forbush Decreases. Solar Physics, 2021, 296, 1.                                                                                                                                                          | 1.0 | 2         |
| 12 | Behavior of High-Energy Magnetospheric Electrons in Solar Cycles 22–24. Bulletin of the Russian<br>Academy of Sciences: Physics, 2021, 85, 904-906.                                                                                | 0.1 | 3         |
| 13 | Experimental Spectrum of Cosmic Ray Variations in Earth Orbit, According to AMS-02 Data. Bulletin of the Russian Academy of Sciences: Physics, 2021, 85, 1042-1044.                                                                | 0.1 | 1         |
| 14 | Long-Term Modulation of Cosmic Rays in Solar Cycles 23–24. Bulletin of the Russian Academy of<br>Sciences: Physics, 2021, 85, 1045-1048.                                                                                           | 0.1 | 2         |
| 15 | Using Data from a Ground-Based Network of Detectors and the PAMELA and AMS-02 Experiments to<br>Compare Long-Term Variations in the Cosmic Ray Flux. Bulletin of the Russian Academy of Sciences:<br>Physics, 2021, 85, 1039-1041. | 0.1 | 2         |
| 16 | Forbush Effects Created by Coronal Mass Ejections with Magnetic Clouds. Geomagnetism and Aeronomy, 2021, 61, 678-687.                                                                                                              | 0.2 | 7         |
| 17 | Heliospheric Modulation of Cosmic Rays in the Era of Neutron Monitoring. Bulletin of the Russian<br>Academy of Sciences: Physics, 2021, 85, 1052-1054.                                                                             | 0.1 | 0         |
| 18 | Modulation Effectiveness of Coronal Mass Ejections with Different Structure of the Magnetic Field.<br>Bulletin of the Russian Academy of Sciences: Physics, 2021, 85, 1183-1186.                                                   | 0.1 | 0         |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Large Scale Modulation: View from the Earth Points. Physics of Atomic Nuclei, 2021, 84, 1159-1170.                                                                                                                                               | 0.1 | 1         |
| 20 | Influence of Interacting Solar Wind Disturbances on the Variations in Galactic Cosmic Rays.<br>Geomagnetism and Aeronomy, 2021, 61, 792-800.                                                                                                     | 0.2 | 6         |
| 21 | Solar Activity, Galactic Cosmic Ray Variations, and the Global Seismicity of the Earth. Geomagnetism and Aeronomy, 2021, 61, S36-S47.                                                                                                            | 0.2 | 2         |
| 22 | Large Forbush Decreases and their Solar Sources: Features and Characteristics. Solar Physics, 2020, 295, 1.                                                                                                                                      | 1.0 | 3         |
| 23 | Station-Ring Method in the Study of Cosmic-Ray Variations: 2. Examples of Its Use. Geomagnetism and Aeronomy, 2020, 60, 184-191.                                                                                                                 | 0.2 | 2         |
| 24 | Ring of Stations Method in Cosmic Rays Variations Research. Solar Physics, 2020, 295, 1.                                                                                                                                                         | 1.0 | 15        |
| 25 | Interplanetary Coronal Mass Ejections as the Driver of Non-recurrent Forbush Decreases.<br>Astrophysical Journal, 2020, 890, 101.                                                                                                                | 1.6 | 22        |
| 26 | Peculiar Solar Sources and Geospace Disturbances on 20–26 August 2018. Solar Physics, 2020, 295, 1.                                                                                                                                              | 1.0 | 25        |
| 27 | Ring of Station Method in Research of Cosmic Ray Variations: 1. General Description. Geomagnetism and Aeronomy, 2020, 60, 38-45.                                                                                                                 | 0.2 | 3         |
| 28 | Behavior of the Speed and Temperature of the Solar Wind during Interplanetary Disturbances<br>Creating Forbush Decreases. Geomagnetism and Aeronomy, 2020, 60, 521-529.                                                                          | 0.2 | 7         |
| 29 | Solar wind temperature–velocity relationship over the last five solar cycles and Forbush decreases<br>associated with different types of interplanetary disturbance. Monthly Notices of the Royal<br>Astronomical Society, 2020, 500, 2786-2797. | 1.6 | 8         |
| 30 | High-Energy Magnetospheric Electrons and Different Types of Disturbances of the Interplanetary<br>Medium. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 579-581.                                                               | 0.1 | 1         |
| 31 | Long-Term Trends in Forbush Decrease Activity over the Last Six Solar Cycles. Bulletin of the Russian<br>Academy of Sciences: Physics, 2019, 83, 566-568.                                                                                        | 0.1 | 0         |
| 32 | Database capabilities for studying Forbush-effects and interplanetary disturbances. Journal of<br>Physics: Conference Series, 2019, 1181, 012062.                                                                                                | 0.3 | 4         |
| 33 | A Catalogue of Forbush Decreases Recorded on the Surface of Mars from 2012 Until 2016: Comparison<br>with Terrestrial FDs. Solar Physics, 2019, 294, 1.                                                                                          | 1.0 | 15        |
| 34 | An Extended Study of the Precursory Signs of Forbush Decreases: New Findings over the Years<br>2008 – 2016. Solar Physics, 2019, 294, 1.                                                                                                         | 1.0 | 10        |
| 35 | On recurrent Forbush Decreases. Journal of Physics: Conference Series, 2019, 1181, 012009.                                                                                                                                                       | 0.3 | 2         |
| 36 | The rigidity spectrum of the long-term cosmic ray variations during solar activity cycles 19–24.<br>Journal of Physics: Conference Series, 2019, 1181, 012007.                                                                                   | 0.3 | 4         |

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Planetary long term changes of the cosmic ray geomagnetic cut off rigidities. Journal of Physics:<br>Conference Series, 2019, 1181, 012008.                           | 0.3 | 3         |
| 38 | Long-term stability of the neutron monitors global network for overall monitoring period. Journal of Physics: Conference Series, 2019, 1181, 012063.                  | 0.3 | 1         |
| 39 | Onset Time of the GLE 72 Observed at Neutron Monitors and its Relation to Electromagnetic Emissions. Solar Physics, 2019, 294, 1.                                     | 1.0 | 13        |
| 40 | Impact of Different Types of Interplanetary Medium Disturbances of High-Energy Electrons on the<br>Geostationary Orbit. Geomagnetism and Aeronomy, 2019, 59, 878-884. | 0.2 | 1         |
| 41 | Size Distribution of Forbush Effects. Geomagnetism and Aeronomy, 2018, 58, 809-816.                                                                                   | 0.2 | 1         |
| 42 | Long-Term Changes in Vertical Geomagnetic Cutoff Rigidities of Cosmic Rays. Physics of Atomic Nuclei, 2018, 81, 1382-1389.                                            | 0.1 | 5         |
| 43 | Solar Eruptions, Forbush Decreases, and Geomagnetic Disturbances From Outstanding Active Region<br>12673. Space Weather, 2018, 16, 1549-1560.                         | 1.3 | 23        |
| 44 | Global Survey Method for the World Network of Neutron Monitors. Geomagnetism and Aeronomy, 2018, 58, 356-372.                                                         | 0.2 | 52        |
| 45 | Long-Term Changes in the Number and Magnitude of Forbush-Effects. Geomagnetism and Aeronomy, 2018, 58, 615-624.                                                       | 0.2 | 10        |
| 46 | Cosmic Rays near Proxima Centauri b. Astronomy Letters, 2018, 44, 324-330.                                                                                            | 0.1 | 13        |
| 47 | Nowcasting Solar Energetic Particle Events Using Principal Component Analysis. Solar Physics, 2018, 293, 1.                                                           | 1.0 | 24        |
| 48 | Index of the Long-Term Influence of Sporadic Solar Activity on Cosmic Ray Modulation. Geomagnetism and Aeronomy, 2018, 58, 1-8.                                       | 0.2 | 6         |
| 49 | The Global Survey Method Applied to Ground-level Cosmic Ray Measurements. Solar Physics, 2018, 293,<br>1.                                                             | 1.0 | 54        |
| 50 | Main Properties of Forbush Effects Related to High-Speed Streams from Coronal Holes. Geomagnetism and Aeronomy, 2018, 58, 154-168.                                    | 0.2 | 30        |
| 51 | The Evolutionary-Genetic Basis of Structural-Cenotic Diversity of Modern Vegetation in Prebaikalia.<br>Geography and Natural Resources, 2018, 39, 46-54.              | 0.1 | 2         |
| 52 | Parameters of the Geomagnetic Activity, Thermosphere, and Ionosphere for the Ultimately Intense<br>Magnetic Storm. Geomagnetism and Aeronomy, 2018, 58, 501-508.      | 0.2 | 0         |
| 53 | Power Law Distribution of Forbush Decrease Magnitude. Research Notes of the AAS, 2018, 2, 49.                                                                         | 0.3 | 0         |
| 54 | Specific features of the rigidity spectrum of Forbush effects. Geomagnetism and Aeronomy, 2017, 57, 177-189.                                                          | 0.2 | 8         |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Ultimate ground level enhancements of solar cosmic ray intensity. Bulletin of the Russian Academy of<br>Sciences: Physics, 2017, 81, 124-127.                                                                    | 0.1 | 2         |
| 56 | Cosmic-ray vector anisotropy and local characteristics of the interplanetary medium. Geomagnetism and Aeronomy, 2017, 57, 389-397.                                                                               | 0.2 | 8         |
| 57 | Long- and Mid-Term Variations of the Soft X-ray Flare Type in Solar Cycles. Solar Physics, 2017, 292, 1.                                                                                                         | 1.0 | 2         |
| 58 | Geobotanical forecasting in the nature management ecological optimization in Baikalian Siberia.<br>Geography and Natural Resources, 2017, 38, 38-45.                                                             | 0.1 | 3         |
| 59 | Characteristic behavior of high-energy magnetospheric electrons from 1987 to 2007. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 211-214.                                                      | 0.1 | 3         |
| 60 | Contributions from changes in various solar indices in cycles 20–23 and 24 to the modulation of cosmic rays. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 146-150.                            | 0.1 | 7         |
| 61 | Flares, ejections, proton events. Geomagnetism and Aeronomy, 2017, 57, 727-737.                                                                                                                                  | 0.2 | 25        |
| 62 | Vector anisotropy of cosmic rays in the beginning of Forbush effects. Geomagnetism and Aeronomy, 2017, 57, 541-548.                                                                                              | 0.2 | 6         |
| 63 | Vegetation as a factor in the system of natural environment preservation of Prebaikalia. Geography and Natural Resources, 2017, 38, 341-348.                                                                     | 0.1 | 2         |
| 64 | Space Weather Forecasting at IZMIRAN. Geomagnetism and Aeronomy, 2017, 57, 869-876.                                                                                                                              | 0.2 | 8         |
| 65 | Behavior of the cosmic ray density during the initial phase of the Forbush effect. Geomagnetism and<br>Aeronomy, 2016, 56, 645-651.                                                                              | 0.2 | 6         |
| 66 | Magnetospheric effects of cosmic rays. 1. Long-term changes in the geomagnetic cutoff rigidities for<br>the stations of the global network of neutron monitors. Geomagnetism and Aeronomy, 2016, 56,<br>381-392. | 0.2 | 10        |
| 67 | Improving the efficiency of solving discrete optimization problems: The case of VRP. Journal of Physics: Conference Series, 2016, 681, 012050.                                                                   | 0.3 | 2         |
| 68 | Coronal holes in the long-term modulation of cosmic rays. Geomagnetism and Aeronomy, 2016, 56, 257-263.                                                                                                          | 0.2 | 7         |
| 69 | Solar Activity Parameters and Associated Forbush Decreases During the Minimum Between Cycles 23 and 24 and the Ascending Phase of Cycle 24. Solar Physics, 2016, 291, 1025-1041.                                 | 1.0 | 59        |
| 70 | Possible ground level enhancements at the beginning of the maximum of Solar Cycle 24. Journal of<br>Physics: Conference Series, 2015, 632, 012063.                                                               | 0.3 | 5         |
| 71 | Annual variation in and heliolatitude dependence of cosmic ray density. Bulletin of the Russian<br>Academy of Sciences: Physics, 2015, 79, 618-621.                                                              | 0.1 | 1         |
| 72 | Modeling variations in CR density in magnetic clouds. Bulletin of the Russian Academy of Sciences:<br>Physics, 2015, 79, 637-639.                                                                                | 0.1 | 1         |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Role of vegetation of Prebaikalia in the formation of the natural environmental quality. Geography<br>and Natural Resources, 2015, 36, 139-145.                                                                    | 0.1 | 1         |
| 74 | Annual variations of cosmic rays in the 24th solar cycle. Bulletin of the Russian Academy of Sciences:<br>Physics, 2015, 79, 622-626.                                                                              | 0.1 | 4         |
| 75 | Recurrent and sporadic Forbush-effects in deep solar minimum. Journal of Physics: Conference Series, 2015, 632, 012062.                                                                                            | 0.3 | 8         |
| 76 | Phase distribution of the first harmonic of the cosmic ray anisotropy during the initial phase of Forbush effects. Journal of Physics: Conference Series, 2015, 632, 012044.                                       | 0.3 | 5         |
| 77 | Derivation of relativistic SEP properties through neutron monitor data modeling. Journal of Physics:<br>Conference Series, 2015, 632, 012076.                                                                      | 0.3 | 2         |
| 78 | Modeling the behavior of the cosmic ray density in magnetic clouds. Journal of Physics: Conference Series, 2015, 632, 012051.                                                                                      | 0.3 | 1         |
| 79 | Density variations of galactic cosmic rays in magnetic clouds. Geomagnetism and Aeronomy, 2015, 55, 430-441.                                                                                                       | 0.2 | 2         |
| 80 | Analyzing the temperature effect of high mountain cosmic ray detectors using the database of the<br>global network of muon telescopes. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79,<br>662-666. | 0.1 | 4         |
| 81 | A Simple Way to Estimate the Soft X-ray Class of Far-Side Solar Flares Observed with STEREO/EUVI.<br>Solar Physics, 2015, 290, 1947-1961.                                                                          | 1.0 | 12        |
| 82 | Possible ground level enhancements of solar cosmic rays in 2012. Bulletin of the Russian Academy of<br>Sciences: Physics, 2015, 79, 561-565.                                                                       | 0.1 | 8         |
| 83 | The Solar Polar Field in the Cosmic-Ray Intensity Modulation. Journal of Physics: Conference Series, 2015, 632, 012074.                                                                                            | 0.3 | 3         |
| 84 | Galactic Cosmic Ray Density Variations in Magnetic Clouds. Solar Physics, 2015, 290, 1429-1444.                                                                                                                    | 1.0 | 49        |
| 85 | Relationship Between the Magnetic Flux of Solar Eruptions and the Ap Index of Geomagnetic Storms.<br>Solar Physics, 2015, 290, 627-633.                                                                            | 1.0 | 9         |
| 86 | A Challenging Solar Eruptive Event of 18 November 2003 and the Causes of the 20 November<br>Geomagnetic Superstorm. IV. Unusual Magnetic Cloud and Overall Scenario. Solar Physics, 2014, 289,<br>4653-4673.       | 1.0 | 19        |
| 87 | The ecological potential of vegetation as a factor of nature management in Baikalian Siberia.<br>Geography and Natural Resources, 2014, 35, 229-235.                                                               | 0.1 | 4         |
| 88 | Cosmic ray modulation during the solar activity growth phase of cycle 24. Geomagnetism and Aeronomy, 2014, 54, 430-436.                                                                                            | 0.2 | 14        |
| 89 | Coronal Mass Ejections and Non-recurrent Forbush Decreases. Solar Physics, 2014, 289, 3949-3960.                                                                                                                   | 1.0 | 74        |
| 90 | Simulation of Electromagnetic Transients in ITER Thermal Shield Manifolds. IEEE Transactions on<br>Applied Superconductivity, 2014, 24, 1-4.                                                                       | 1.1 | 1         |

| #   | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Magnetic properties of Fe – Nd – B sintered permanent magnets obtained by the method of strip casting. Metal Science and Heat Treatment, 2013, 55, 92-95.                                                                      | 0.2 | 1         |
| 92  | Determining the instant of acceleration of protons responsible for the onset of ground-level<br>enhancements of solar cosmic rays. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77,<br>483-486.                 | 0.1 | 0         |
| 93  | Spectrum of long-term cosmic ray variations during the sunspot minimum in 2009. Bulletin of the<br>Russian Academy of Sciences: Physics, 2013, 77, 513-516.                                                                    | 0.1 | 4         |
| 94  | Forbush decreases in the 19th solar cycle. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 535-537.                                                                                                            | 0.1 | 1         |
| 95  | Relationship between Forbush effect parameters and the heliolongitude of solar sources.<br>Geomagnetism and Aeronomy, 2013, 53, 10-18.                                                                                         | 0.2 | 15        |
| 96  | Forbush Decreases Associated with Western Solar Sources and Geomagnetic Storms: A Study on Precursors. Solar Physics, 2013, 283, 557-563.                                                                                      | 1.0 | 17        |
| 97  | Efficient approach to simulate EM loads on massive structures in ITER machine. Fusion Engineering and Design, 2013, 88, 1908-1911.                                                                                             | 1.0 | 5         |
| 98  | Computational models for electromagnetic transients in ITER vacuum vessel, cryostat and thermal shield. Fusion Engineering and Design, 2013, 88, 1904-1907.                                                                    | 1.0 | 3         |
| 99  | Coronal mass ejections in July 2005 and an unusual heliospheric event. Cosmic Research, 2013, 51, 326-334.                                                                                                                     | 0.2 | 3         |
| 100 | Long-period variations in the amplitude-phase interrelation of the first cosmic ray anisotropy harmonic. Geomagnetism and Aeronomy, 2013, 53, 561-570.                                                                         | 0.2 | 7         |
| 101 | Magnetic Flux of EUV Arcade and Dimming Regions as a Relevant Parameter for Early Diagnostics of<br>Solar Eruptions – Sources of Non-recurrent Geomagnetic Storms and Forbush Decreases. Solar<br>Physics, 2013, 282, 175-199. | 1.0 | 25        |
| 102 | Use of free-falling stream of melt for making nanocrystalline magnetically hard Fe – Nd – B materials.<br>Metal Science and Heat Treatment, 2013, 55, 87-91.                                                                   | 0.2 | 0         |
| 103 | Online application for the barometric coefficient calculation of the NMDB stations. New Astronomy, 2013, 19, 10-18.                                                                                                            | 0.8 | 13        |
| 104 | Procedure to emend neutron monitor data that are affected by snow accumulations on and around the detector housing. Journal of Geophysical Research: Space Physics, 2013, 118, 6852-6857.                                      | 0.8 | 9         |
| 105 | Forbush-decreases in 19th solar cycle. Journal of Physics: Conference Series, 2013, 409, 012165.                                                                                                                               | 0.3 | 7         |
| 106 | An online application for the barometric coefficient calculation of NMDB stations. Journal of Physics: Conference Series, 2013, 409, 012179.                                                                                   | 0.3 | 0         |
| 107 | Dependence of Forbush-decrease characteristics on parameters of solar eruptions. Journal of Physics:<br>Conference Series, 2013, 409, 012150.                                                                                  | 0.3 | 5         |
| 108 | Determination of Acceleration Time of Protons Responsible for the GLE Onset. Journal of Physics:<br>Conference Series, 2013, 409, 012151.                                                                                      | 0.3 | 6         |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Magnetospheric cut-off rigidity variations recorded by neutron monitors in the events from 2001 to 2010. Journal of Physics: Conference Series, 2013, 409, 012201.                                 | 0.3 | 1         |
| 110 | Long term variations of the amplitude-phase interrelation of the cosmic ray anisotropy first harmonic. Journal of Physics: Conference Series, 2013, 409, 012163.                                   | 0.3 | 0         |
| 111 | Cosmic ray events in the beginning of 2012. Journal of Physics: Conference Series, 2013, 409, 012206.                                                                                              | 0.3 | 2         |
| 112 | The observed spectrum of long-term cosmic ray variations in minimum solar activity 2009. Journal of Physics: Conference Series, 2013, 409, 012169.                                                 | 0.3 | 1         |
| 113 | Influence of high-speed streams from coronal holes on cosmic ray intensity in 2007. Journal of<br>Physics: Conference Series, 2013, 409, 012181.                                                   | 0.3 | 7         |
| 114 | Forecasting Geomagnetic Conditions in near-Earth space. Journal of Physics: Conference Series, 2013, 409, 012197.                                                                                  | 0.3 | 6         |
| 115 | Precursors of Forbush decreases connected to western solar sources and geomagnetic storms.<br>Journal of Physics: Conference Series, 2013, 409, 012182.                                            | 0.3 | 0         |
| 116 | The first Forbush decrease of solar cycle 24. Journal of Physics: Conference Series, 2013, 409, 012202.                                                                                            | 0.3 | 11        |
| 117 | SIZE DISTRIBUTIONS OF SOLAR FLARES AND SOLAR ENERGETIC PARTICLE EVENTS. Astrophysical Journal Letters, 2012, 756, L29.                                                                             | 3.0 | 56        |
| 118 | Prospects of the use of methods of super fast hardening of liquid metal in the production of<br>nanocrystalline magnets based on Fe – Nd – B. Metal Science and Heat Treatment, 2012, 54, 330-333. | 0.2 | 2         |
| 119 | The Asymptotic Longitudinal Cosmic Ray Intensity Distribution as a Precursor of Forbush Decreases.<br>Solar Physics, 2012, 280, 641-650.                                                           | 1.0 | 18        |
| 120 | Galactic Cosmic Ray Modulation and the Last Solar Minimum. Solar Physics, 2012, 280, 255-271.                                                                                                      | 1.0 | 35        |
| 121 | Global computational models for analysis of electromagnetic transients to support ITER tokamak design and optimization. Fusion Engineering and Design, 2012, 87, 1519-1532.                        | 1.0 | 13        |
| 122 | Some aspects of ecological risks of nature management in southern Baikalian Siberia. Geography and<br>Natural Resources, 2012, 33, 312-318.                                                        | 0.1 | 2         |
| 123 | Forbush effects with a sudden and gradual onset. Geomagnetism and Aeronomy, 2012, 52, 292-299.                                                                                                     | 0.2 | 33        |
| 124 | Extrema of long-term modulation of the cosmic ray intensity in the last five solar cycles.<br>Geomagnetism and Aeronomy, 2012, 52, 438-444.                                                        | 0.2 | 9         |
| 125 | Precursor Effects in Different Cases of Forbush Decreases. Solar Physics, 2012, 276, 337-350.                                                                                                      | 1.0 | 35        |
| 126 | Specification of asymmetric VDE loads of the ITER tokamak. Fusion Engineering and Design, 2011, 86, 1915-1919.                                                                                     | 1.0 | 40        |

| #   | Article                                                                                                                                                                       | IF               | CITATIONS   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| 127 | Effect of snow in cosmic ray variations and methods for taking it into consideration. Geomagnetism and Aeronomy, 2011, 51, 247-253.                                           | 0.2              | 6           |
| 128 | Natural stability of vegetation in geosystems of southern Middle Siberia. Geography and Natural Resources, 2011, 32, 108-118.                                                 | 0.1              | 4           |
| 129 | First results of reconstruction of the environment in the Holocene on the Lena-Angara plateau<br>(Eastern Siberia). Doklady Earth Sciences, 2011, 440, 1435-1439.             | 0.2              | 2           |
| 130 | Temperature effect of the muon component and practical questions for considering it in real time.<br>Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 820-824. | 0.1              | 21          |
| 131 | Dependence of Forbush-decrease magnitudes on parameters of solar eruptions. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 796-798.                          | 0.1              | 7           |
| 132 | Investigating the influence of a Forbush decrease on the detected flux of high-energy muons. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 799-800.         | 0.1              | 1           |
| 133 | Use of modern domestically produced equipment in glassmaking practice. Glass and Ceramics (English) Tj ETQq1                                                                  | 1 0,78431<br>0.2 | 4 rgBT /Ove |
| 134 | Intense Ground-Level Enhancements of Solar Cosmic Rays During the Last Solar Cycles. Solar Physics, 2011, 269, 155-168.                                                       | 1.0              | 29          |
| 135 | Applications and usage of the real-time Neutron Monitor Database. Advances in Space Research, 2011, 47, 2210-2222.                                                            | 1.2              | 105         |
| 136 | Solar activity and the associated ground level enhancements of solar cosmic rays during solar cycle 23. Astrophysics and Space Sciences Transactions, 2011, 7, 439-443.       | 1.0              | 13          |
| 137 | Variations of CMEs Properties during the Different Phases of the Solar Cycle 23. , 2010, , .                                                                                  |                  | 2           |
| 138 | On the ground level enhancement beginning. Astronomy Letters, 2010, 36, 520-530.                                                                                              | 0.1              | 10          |
| 139 | Effects of strong geomagnetic storms on Northern railways in Russia. Advances in Space Research, 2010, 46, 1102-1110.                                                         | 1.2              | 53          |
| 140 | A New Version of the Neutron Monitor Based Anisotropic GLE Model: Application to GLE60. Solar<br>Physics, 2010, 264, 239-254.                                                 | 1.0              | 16          |
| 141 | On the Analysis of the Complex Forbush Decreases ofÂJanuaryÂ2005. Solar Physics, 2010, 266, 181-193.                                                                          | 1.0              | 35          |
| 142 | Relationships between neutron fluxes and rain flows. Advances in Space Research, 2010, 46, 637-641.                                                                           | 1.2              | 8           |
| 143 | Implementation of the ground level enhancement alert software at NMDB database. New Astronomy, 2010, 15, 744-748.                                                             | 0.8              | 19          |
| 144 | Ground level enhancements of solar cosmic rays during the last three solar cycles. Geomagnetism and Aeronomy, 2010, 50, 21-33.                                                | 0.2              | 45          |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Long-term modulation of galactic cosmic rays at solar activity minimums. Geomagnetism and Aeronomy, 2010, 50, 436-442.                                                              | 0.2 | 2         |
| 146 | The burst of solar and geomagnetic activity in August–September 2005. Annales Geophysicae, 2009, 27,<br>1019-1026.                                                                  | 0.6 | 20        |
| 147 | Dynamic response of the ITER vacuum vessel to electromagnetic loads during VDEs. , 2009, , .                                                                                        |     | 1         |
| 148 | Stray magnetic field produced by ITER tokamak complex. Plasma Devices and Operations, 2009, 17, 230-237.                                                                            | 0.6 | 7         |
| 149 | Modeling the solar cosmic ray event of 13 December 2006 using ground level neutron monitor data.<br>Advances in Space Research, 2009, 43, 474-479.                                  | 1.2 | 26        |
| 150 | The role of cyclic solar magnetic field variations in the long-term cosmic ray modulation. Advances in<br>Space Research, 2009, 43, 673-679.                                        | 1.2 | 2         |
| 151 | Russian ground-level detectors of cosmic ray observations as a part of the world wide network:<br>History and development. Advances in Space Research, 2009, 44, 1207-1214.         | 1.2 | 0         |
| 152 | Anomalously low solar and geomagnetic activities in 2007. Geomagnetism and Aeronomy, 2009, 49, 566-573.                                                                             | 0.2 | 5         |
| 153 | Properties of solar X-ray flares and proton event forecasting. Advances in Space Research, 2009, 43, 467-473.                                                                       | 1.2 | 29        |
| 154 | Interactive database of cosmic ray anisotropy (DB-A10). Advances in Space Research, 2009, 43, 708-716.                                                                              | 1.2 | 26        |
| 155 | Solar proton enhancements in different energy channels and coronal mass ejections during the last solar cycle. Advances in Space Research, 2009, 43, 687-693.                       | 1.2 | 7         |
| 156 | The unusual cosmic ray variations in July 2005 resulted from western and behind the limb solar activity. Advances in Space Research, 2009, 43, 582-588.                             | 1.2 | 14        |
| 157 | Neutron monitor asymptotic directions of viewing during the event of 13 December 2006. Advances in Space Research, 2009, 43, 518-522.                                               | 1.2 | 12        |
| 158 | Real-time GLE alert in the ANMODAP Center for December 13, 2006. Advances in Space Research, 2009, 43, 728-734.                                                                     | 1.2 | 19        |
| 159 | Behavior of the cosmic-ray vector anisotropy before interplanetary shocks. Bulletin of the Russian<br>Academy of Sciences: Physics, 2009, 73, 331-333.                              | 0.1 | 12        |
| 160 | About the role of the Sun magnetic field characteristics in the long-term galactic cosmic rays modulation. Bulletin of the Russian Academy of Sciences: Physics, 2009, 73, 334-336. | 0.1 | 0         |
| 161 | An Extreme Solar Event of 20 January 2005: PropertiesÂof the Flare and the Origin of Energetic<br>Particles. Solar Physics, 2008, 252, 149-177.                                     | 1.0 | 94        |
| 162 | Connection of Forbush effects to the X-ray flares. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 342-350.                                                         | 0.6 | 11        |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Manifestations of cyclic variations in the solar magnetic field in long-term modulation of cosmic rays. Geomagnetism and Aeronomy, 2008, 48, 571-577.                                       | 0.2 | 9         |
| 164 | 3D Field Simulation of Complex Systems With Permanent Magnets and Excitation Coils. IEEE Transactions on Applied Superconductivity, 2008, 18, 1609-1612.                                    | 1.1 | 7         |
| 165 | Vegetation stability in the system of geobotanical forecasting. Geography and Natural Resources, 2008, 29, 124-131.                                                                         | 0.1 | 12        |
| 166 | Evolutionary dynamical mapping of Siberia's vegetation for forecasting purposes. Geography and Natural Resources, 2008, 29, 9-17.                                                           | 0.1 | 4         |
| 167 | Computation technology based on KOMPOT and KLONDIKE codes for magnetostatic simulations in tokamaks. Plasma Devices and Operations, 2008, 16, 89-103.                                       | 0.6 | 15        |
| 168 | Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena.<br>Proceedings of the International Astronomical Union, 2008, 4, 439-450.                        | 0.0 | 90        |
| 169 | Anomalous Forbush effects from sources far from Sun center. Proceedings of the International Astronomical Union, 2008, 4, 451-456.                                                          | 0.0 | 0         |
| 170 | GLEs as a Warning Tool for Radiation Effects on Electronics and Systems: A New Alert System Based on Real-Time Neutron Monitors. IEEE Transactions on Nuclear Science, 2007, 54, 1082-1088. | 1.2 | 10        |
| 171 | Cosmic Ray Radiation Effects on Space Environment Associated to Intense Solar and Geomagnetic Activity. IEEE Transactions on Nuclear Science, 2007, 54, 1089-1096.                          | 1.2 | 14        |
| 172 | Effects of Strong Geomagnetic Storms on Northern Railways in Russia. , 2007, , .                                                                                                            |     | 8         |
| 173 | Numerical Simulations of Transient Electromagnetic Processes for ITER Thermal Shield Design. , 2007, ,                                                                                      |     | 1         |
| 174 | Modeling ground level enhancements: Event of 20 January 2005. Journal of Geophysical Research, 2007,<br>112, n/a-n/a.                                                                       | 3.3 | 79        |
| 175 | Estimation of long-term stability of detectors within the global network of neutron monitors.<br>Geomagnetism and Aeronomy, 2007, 47, 251-255.                                              | 0.2 | 8         |
| 176 | Sources of efficient acceleration of solar flare particles: Observational aspects. Astronomy Reports, 2007, 51, 577-587.                                                                    | 0.2 | 1         |
| 177 | Simulation of the modulation of galactic cosmic rays during solar activity cycles 21–23. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 974-976.                           | 0.1 | 7         |
| 178 | Relationship between Forbush effects and X-ray flares. Bulletin of the Russian Academy of Sciences:<br>Physics, 2007, 71, 988-990.                                                          | 0.1 | 2         |
| 179 | Peak-Size Distributions of Proton Fluxes and Associated Soft X-Ray Flares. Solar Physics, 2007, 246, 457-470.                                                                               | 1.0 | 42        |
| 180 | Correlation between the near-Earth solar wind parameters and the source surface magnetic field.<br>Geomagnetism and Aeronomy, 2006, 46, 430-437.                                            | 0.2 | 16        |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Spacecraft operational anomalies and space weather impact hazards. Advances in Space Research, 2006, 37, 184-190.                                                                                           | 1.2 | 19        |
| 182 | Space weather prediction by cosmic rays. Advances in Space Research, 2006, 37, 1141-1147.                                                                                                                   | 1.2 | 26        |
| 183 | Long-term variations of galactic cosmic rays in the past and future from observations of various solar activity characteristics. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 1161-1166. | 0.6 | 16        |
| 184 | First high-resolution dated records of vegetation and climate changes on the Lake Baikal northern shore in the middle-late Holocene. Doklady Earth Sciences, 2006, 411, 1331-1335.                          | 0.2 | 11        |
| 185 | Prospects of Space Weather Prediction Based on Solar Proton Events. AIP Conference Proceedings, 2006, , .                                                                                                   | 0.3 | 1         |
| 186 | Modeling of the solar energetic particles recorded at Neutron Monitors. AIP Conference<br>Proceedings, 2006, , .                                                                                            | 0.3 | 2         |
| 187 | The new Athens Center applied to Space Weather Forecasting. AIP Conference Proceedings, 2006, , .                                                                                                           | 0.3 | Ο         |
| 188 | Validation of VINCENTA modelling based on an experiment with the central solenoid model coil of the<br>International Thermonuclear Experimental Reactor. Plasma Devices and Operations, 2006, 14, 47-59.    | 0.6 | 10        |
| 189 | Unexpected burst of solar activity recorded by neutron monitors during October–November 2003.<br>Advances in Space Research, 2005, 35, 691-696.                                                             | 1.2 | 19        |
| 190 | Different space weather effects in anomalies of the high and low orbital satellites. Advances in Space Research, 2005, 36, 2530-2536.                                                                       | 1.2 | 7         |
| 191 | A study of the ground level enhancement of 23 February 1956. Advances in Space Research, 2005, 35, 697-701.                                                                                                 | 1.2 | 23        |
| 192 | Proton Enhancements and Their Relation to the X-Ray Flares During the Three Last Solar Cycles. Solar Physics, 2005, 229, 135-159.                                                                           | 1.0 | 93        |
| 193 | Effect of core glass composition on the optical properties of active fibers. Inorganic Materials, 2005, 41, 434-437.                                                                                        | 0.2 | 26        |
| 194 | Proton Events and X-ray Flares in the Last Three Solar Cycles. Cosmic Research, 2005, 43, 165-178.                                                                                                          | 0.2 | 18        |
| 195 | Statistical Correlation of the Rate of Failures on Geosynchronous Satellites with Fluxes of Energetic Electrons and Protons. Cosmic Research, 2005, 43, 179-185.                                            | 0.2 | 23        |
| 196 | Solar cosmic rays during the extremely high ground level enhancement on 23 February 1956. Annales<br>Geophysicae, 2005, 23, 2281-2291.                                                                      | 0.6 | 26        |
| 197 | Space weather and space anomalies. Annales Geophysicae, 2005, 23, 3009-3018.                                                                                                                                | 0.6 | 10        |
| 198 | Operative center of the geophysical prognosis in Izmiran. Annales Geophysicae, 2005, 23, 3163-3170.                                                                                                         | 0.6 | 11        |

A V Belov

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | The new Athens center on data processing from the neutron monitor network in real time. Annales<br>Geophysicae, 2005, 23, 3103-3110.                                                                                | 0.6 | 15        |
| 200 | Numerical optimization of the neutral beam magnetic field reduction system of the International Thermonuclear Experimental Reactor. Plasma Devices and Operations, 2005, 13, 301-316.                               | 0.6 | 1         |
| 201 | Simulation and analysis of eddy currents induced in the GLOBUS-M tokamak. Plasma Devices and Operations, 2005, 13, 25-38.                                                                                           | 0.6 | 8         |
| 202 | SPACE WEATHER RESEARCH: THE CONNECTION BETWEEN SATELLITE MALFUNCTION DATA AND COSMIC RAY ACTIVITY INDICES. International Journal of Modern Physics A, 2005, 20, 6675-6677.                                          | 0.5 | 2         |
| 203 | 28 OCTOBER 2003 FLARE: HIGH-ENERGY GAMMA EMISSION, TYPE II RADIO EMISSION AND SOLAR PARTICLE OBSERVATIONS. International Journal of Modern Physics A, 2005, 20, 6705-6707.                                          | 0.5 | 15        |
| 204 | ALERT SYSTEM FOR GROUND LEVEL COSMIC-RAY ENHANCEMENTS PREDICTION AT THE ATHENS NEUTRON MONITOR NETWORK IN REAL-TIME. International Journal of Modern Physics A, 2005, 20, 6711-6713.                                | 0.5 | 8         |
| 205 | Space weather conditions and spacecraft anomalies in different orbits. Space Weather, 2005, 3, n/a-n/a.                                                                                                             | 1.3 | 116       |
| 206 | Prediction of expected global climate change by forecasting of galactic cosmic ray intensity time<br>variation in near future based on solar magnetic field data. Advances in Space Research, 2005, 35,<br>491-495. | 1.2 | 14        |
| 207 | Space weather forecasting at the new Athens center: the recent extreme events of January 2005. IEEE Transactions on Nuclear Science, 2005, 52, 2307-2312.                                                           | 1.2 | 8         |
| 208 | Magnetospheric effects in cosmic rays during the unique magnetic storm on November 2003. Journal of Geophysical Research, 2005, 110, .                                                                              | 3.3 | 101       |
| 209 | Statistical analysis of solar proton events. Annales Geophysicae, 2004, 22, 2255-2271.                                                                                                                              | 0.6 | 53        |
| 210 | Electromagnetic study of the iter thermal shield. Plasma Devices and Operations, 2004, 12, 217-228.                                                                                                                 | 0.6 | 3         |
| 211 | When and where are solar cosmic rays accelerated most efficiently?. Astronomy Reports, 2004, 48, 665-677.                                                                                                           | 0.2 | 10        |
| 212 | Solar and Heliospheric Phenomena in October–November 2003: Causes and Effects. Cosmic Research,<br>2004, 42, 435-488.                                                                                               | 0.2 | 87        |
| 213 | Magnetic Storms in October 2003. Cosmic Research, 2004, 42, 489-535.                                                                                                                                                | 0.2 | 53        |
| 214 | Generation of Supercontinuum and Spectrum Broadening in Holey Fibers Subjected to Radiation from<br>Continuous Femtosecond Visible and Infrared Lasers. Measurement Techniques, 2004, 47, 40-46.                    | 0.2 | 0         |
| 215 | Unusually high geomagnetic activity in 2003. Cosmic Research, 2004, 42, 541-550.                                                                                                                                    | 0.2 | 6         |
| 216 | Cosmic-Ray Variations During the Two Greatest Bursts of Solar Activity in the 23rd Solar Cycle. Solar<br>Physics, 2004, 224, 345-358.                                                                               | 1.0 | 13        |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Monitoring and Forecasting of Great Solar Proton Events Using the Neutron Monitor Network in<br>Real Time. IEEE Transactions on Plasma Science, 2004, 32, 1478-1488.                                    | 0.6 | 33        |
| 218 | The relation of high- and low-orbit satellite anomalies to different geophysical parameters. , 2004, ,<br>147-163.                                                                                      |     | 10        |
| 219 | Title is missing!. Solar System Research, 2003, 37, 56-65.                                                                                                                                              | 0.3 | 1         |
| 220 | Cosmic ray anisotropy before and during the passage of major solar wind disturbances. Advances in Space Research, 2003, 31, 919-924.                                                                    | 1.2 | 37        |
| 221 | The development of the Russian Space Weather Initiatives. Advances in Space Research, 2003, 31, 855-860.                                                                                                | 1.2 | Ο         |
| 222 | Phenomenology of internal reconnections in the National Spherical Torus Experiment. Physics of Plasmas, 2003, 10, 664-670.                                                                              | 0.7 | 12        |
| 223 | Latitudinal and radial variation of >2 GeV/n protons and alpha-particles at solar maximum:<br>ULYSSES COSPIN/KET and neutron monitor network observations. Annales Geophysicae, 2003, 21,<br>1295-1302. | 0.6 | 11        |
| 224 | Waveguide characteristics of single-mode microstructural fibres with a complicated refractive index distribution profile. Quantum Electronics, 2002, 32, 641-644.                                       | 0.3 | 5         |
| 225 | On the possibility of compensating material dispersion in three-layer optical fibres in the wavelength range below 1.3 14m. Quantum Electronics, 2002, 32, 425-427.                                     | 0.3 | 2         |
| 226 | On the Calculation of Concentrated Loads at Finite-Element Mesh Nodes as Equivalents of a Given Spatial Distribution of Volume Force Density. Plasma Devices and Operations, 2002, 10, 269-284.         | 0.6 | 6         |
| 227 | Mapping the Aesthetic Aspects of Natural Complexes in the Western Lake Baykal Region. Mapping<br>Sciences and Remote Sensing, 2002, 39, 73-80.                                                          | 0.0 | Ο         |
| 228 | Numerical Algorithm for Field Line Reconstruction from Vector Field Distribution. Plasma Devices and Operations, 2002, 10, 263-268.                                                                     | 0.6 | 0         |
| 229 | Common features in the development of powerful long-duration solar X-ray flares. Astronomy<br>Reports, 2002, 46, 597-608.                                                                               | 0.2 | 6         |
| 230 | What determines the magnitude of forbush decreases?. Advances in Space Research, 2001, 27, 625-630.                                                                                                     | 1.2 | 93        |
| 231 | The Role of Long-Duration X-ray Solar Flares in the Generation of Interplanetary Disturbances. Solar<br>System Research, 2001, 35, 505-512.                                                             | 0.3 | 1         |
| 232 | Design and co-Ordination of Multi-Station International Neutron Monitor Networks. Space Science<br>Reviews, 2000, 93, 285-303.                                                                          | 3.7 | 72        |
| 233 | Cosmic Rays in Relation to Space Weather. Space Science Reviews, 2000, 93, 153-174.                                                                                                                     | 3.7 | 90        |
| 234 | Large Scale Modulation: View From the Earth. Space Science Reviews, 2000, 93, 79-105.                                                                                                                   | 3.7 | 82        |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | PROBLEMS IN THE CARTOGRAPHIC STUDY OF VEGETATION DISTURBANCE. Mapping Sciences and Remote Sensing, 2000, 37, 137-143.                                                                                               | 0.0 | 0         |
| 236 | Cosmic Rays in Relation to Space Weather. Space Sciences Series of ISSI, 2000, , 153-174.                                                                                                                           | 0.0 | 16        |
| 237 | High precision pick-up (Mirnov) coils for disruption studies in the T-11M and TCABR tokamaks. Review of Scientific Instruments, 1999, 70, 449-451.                                                                  | 0.6 | 2         |
| 238 | Profile structure of single-mode fibers with low nonlinear properties for long-haul communication lines. Optics Communications, 1999, 161, 212-216.                                                                 | 1.0 | 4         |
| 239 | Latitudinal and radial variation of >2 GeV/n protons and α-particles in the northern heliosphere:<br>Ulysses COSPIN/KET and neutron monitor network observations. Advances in Space Research, 1999, 23,<br>443-447. | 1.2 | 9         |
| 240 | High-power single-mode neodymium fibre laser. Quantum Electronics, 1997, 27, 1-2.                                                                                                                                   | 0.3 | 7         |
| 241 | The spectrum of cosmic ray variations during the 19th–22nd solar cycles. Radiation Measurements,<br>1996, 26, 471-475.                                                                                              | 0.7 | 3         |
| 242 | Proton spectra of the four remarkable gle in the 22nd solar cycle. Radiation Measurements, 1996, 26, 461-466.                                                                                                       | 0.7 | 12        |
| 243 | Evidence for prolonged acceleration based on a detailed analysis of the long-duration solar gamma-ray flare of June 15, 1991. Solar Physics, 1996, 166, 107-134.                                                    | 1.0 | 96        |
| 244 | Mechanical forces simulation and stress analysis of the TEXTOR vacuum vessel during plasma disruption under 3d eddy currents load. IEEE Transactions on Magnetics, 1996, 32, 3004-3007.                             | 1.2 | 3         |
| 245 | Nonmetallic inclusions in steel and acoustic properties of piano wire. Metal Science and Heat<br>Treatment, 1995, 37, 339-340.                                                                                      | 0.2 | 5         |
| 246 | lsotropic and anisotropic cosmic ray variations in March–June 1991. Advances in Space Research, 1995,<br>16, 249-253.                                                                                               | 1.2 | 6         |
| 247 | Cosmic-ray forecasting features for big forbush decreases. Nuclear Physics, Section B, Proceedings<br>Supplements, 1995, 39, 136-143.                                                                               | 0.5 | 17        |
| 248 | Broadband dispersion-compensating fiber for high-bit-rate transmission network use. Applied Optics, 1995, 34, 5331.                                                                                                 | 2.1 | 2         |
| 249 | Piano wire and strings with high acoustic properties. Metal Science and Heat Treatment, 1992, 34, 283-287.                                                                                                          | 0.2 | 1         |
| 250 | Brittle fracture of cold worked steel with a fibrous structure. Metal Science and Heat Treatment, 1990, 32, 196-200.                                                                                                | 0.2 | 0         |
| 251 | The measurement of chromatic dispersion in single-mode fibers by interferometric loop. Journal of<br>Lightwave Technology, 1989, 7, 863-868.                                                                        | 2.7 | 7         |
| 252 | Multimode fiber bandwidth prediction based on preform profile. Fiber and Integrated Optics, 1989, 8, 227-234.                                                                                                       | 1.7 | 0         |

| #   | Article                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Muitimode Fiber Bandwidth Prediction Based On Preform Profile. Proceedings of SPIE, 1989, 0992, 261.               | 0.8 | Ο         |
| 254 | Equivalent step-index (ESI) profile of elliptical-core single-mode fibres. Optics Communications, 1985, 56, 93-94. | 1.0 | 2         |