Alexandros L Zografos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3273779/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A multifunctional divergent scaffold to access the formal syntheses of various sesquiterpenoids. Organic and Biomolecular Chemistry, 2021, 19, 8687-8690.	2.8	8
2	Continuous Flow Organocatalytic Chlorination of Alkenes. European Journal of Organic Chemistry, 2021, 2021, 5058-5062.	2.4	4
3	Organocatalytic epoxidation and allylic oxidation of alkenes by molecular oxygen. Green Chemistry, 2021, 23, 9172-9178.	9.0	9
4	2,5-Diketopiperazine Catalysts as Activators of Dioxygen in Oxidative Processes. ACS Catalysis, 2020, 10, 7093-7099.	11.2	22
5	Umpolung-like Cross-coupling of Tosylhydrazones with 4-Hydroxy-2-pyridones under Palladium Catalysis. Organic Letters, 2019, 21, 8110-8115.	4.6	13
6	DFT studies on metal-catalyzed cycloisomerization of <i>trans</i> -1,5-enynes to cyclopropane sesquiterpenoids. Organic and Biomolecular Chemistry, 2019, 17, 5112-5120.	2.8	10
7	Uncovering the pharmacological response of novel sesquiterpene derivatives that differentially alter gene expression and modulate the cell cycle in cancer cells. International Journal of Oncology, 2018, 53, 2167-2179.	3.3	6
8	Advances in Catalytic Aerobic Oxidations by Activation of Dioxygen-Monooxygenase Enzymes and Biomimetics. Synthesis, 2018, 50, 4715-4745.	2.3	13
9	<i>Ex vivo</i> buccal drug delivery of ropinirole hydrochloride in the presence of permeation enhancers: the effect of charge. Pharmaceutical Development and Technology, 2017, 22, 1017-1021.	2.4	17
10	Lynamicin D an antimicrobial natural product affects splicing by inducing the expression of SR protein kinase 1. Bioorganic and Medicinal Chemistry, 2017, 25, 1622-1629.	3.0	15
11	Regioselective Ene-Type Allylic Chlorination of Electron-Rich Alkenes by Activated DMSO. Journal of Organic Chemistry, 2017, 82, 8710-8715.	3.2	16
12	Evaluation of sesquiterpenes as permeation enhancers for a model macromolecule across human skin inÂvitro. Journal of Drug Delivery Science and Technology, 2017, 41, 384-389.	3.0	3
13	Metal-catalyzed cycloisomerization as a powerful tool in the synthesis of complex sesquiterpenoids. Natural Product Reports, 2016, 33, 1093-1117.	10.3	85
14	Platinum-catalyzed cycloisomerizations of a common enyne: a divergent entry to cyclopropane sesquiterpenoids. Formal synthesis of sarcandralactone A. Organic and Biomolecular Chemistry, 2016, 14, 6942-6946.	2.8	24
15	Palladium-catalyzed direct alkenylation of 4-hydroxy-2-pyridones. RSC Advances, 2016, 6, 6978-6982.	3.6	19
16	Advances of Phenoxazines: Synthesis, Reactivity and Their Medicinal Applications. Current Medicinal Chemistry, 2016, 23, 2972-2999.	2.4	18
17	Probing the Mechanism of Allylic Substitution of Morita–Baylis–Hillman Acetates (MBHAs) by using the Silyl Phosphonite Paradigm: Scope and Applications of a Versatile Transformation. Chemistry - A European Journal, 2015, 21, 3278-3289.	3.3	15
18	Divergent pathways to furosesquiterpenes: first total syntheses of (+)-zedoarol and (Rac)-gweicurculactone. Chemical Communications, 2015, 51, 2364-2367.	4.1	17

#	Article	IF	CITATIONS
19	Palladium catalyzed C3-arylation of 4-hydroxy-2-pyridones. Chemical Communications, 2014, 50, 6879-6882.	4.1	47
20	Non-natural Elemane as the "Stepping Stone―for the Synthesis of Germacrane and Guaiane Sesquiterpenes. Organic Letters, 2013, 15, 152-155.	4.6	18
21	Electrocyclization of Oxatrienes in the Construction of Structurally Complex Pyranopyridones. Organic Letters, 2012, 14, 5664-5667.	4.6	22
22	"Common synthetic scaffolds―in the synthesis of structurally diverse natural products. Chemical Society Reviews, 2012, 41, 5613.	38.1	58
23	Accessing the Structural Diversity of Pyridone Alkaloids: Concise Total Synthesis of <i>Rac</i> -Citridone A. Organic Letters, 2011, 13, 4592-4595.	4.6	42
24	Designed Spiroâ€Bicyclic Analogues Targeting the Ribosomal Decoding Center. ChemBioChem, 2011, 12, 71-87.	2.6	14
25	Unnatural Rigid Scaffolds Targeting the Bacterial Ribosome. ChemBioChem, 2009, 10, 1969-1972.	2.6	8
26	Total Synthesis of Diverse Carbogenic Complexity within the Resveratrol Class from a Common Building Block. Journal of the American Chemical Society, 2009, 131, 1753-1765.	13.7	244
27	Total Synthesis of Dimeric Pyrroleâ~'Imidazole Alkaloids:Â Sceptrin, Ageliferin, Nagelamide E, Oxysceptrin, Nakamuric Acid, and the Axinellamine Carbon Skeleton. Journal of the American Chemical Society, 2007, 129, 4762-4775.	13.7	180
28	Total Synthesis of Resveratrolâ€Based Natural Products: A Chemoselective Solution. Angewandte Chemie - International Edition, 2007, 46, 8186-8191.	13.8	162
29	Mechanism of the Vinylcyclobutane Rearrangement of Sceptrin to Ageliferin and Nagelamide E. Angewandte Chemie - International Edition, 2006, 45, 4126-4130.	13.8	73
30	Synthetic Strategies towards Naturally Occurring Tetronic Acids. Synthesis, 2006, 2006, 3157-3188.	2.3	16
31	Rapid Access to the Tricyclic Spirotetronic Core of Abyssomicins. Organic Letters, 2005, 7, 4515-4518.	4.6	43
32	Sceptrin as a Potential Biosynthetic Precursor to Complex Pyrrole–Imidazole Alkaloids: The Total Synthesis of Ageliferin. Angewandte Chemie - International Edition, 2004, 43, 2674-2677.	13.8	128
33	A Novel Short-Step Synthesis of Functionalized 4-Hydroxy-2-quinolones Using a 1-Hydroxybenzotriazole Methodology ChemInform, 2004, 35, no.	0.0	0
34	Short Total Synthesis of (±)-Sceptrin. Journal of the American Chemical Society, 2004, 126, 3726-3727.	13.7	112
35	A Novel Short-Step Synthesis of Functionalized 4-Hydroxy-2-quinolones Using a 1-Hydroxybenzotriazole Methodology. Bulletin of the Chemical Society of Japan, 2004, 77, 1505-1508.	3.2	10
36	An Efficient Route to 3-Aryl-Substituted Quinolin-2-one and 1,8-Naphthyridin-2-one Derivatives of Pharmaceutical Interest ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
37	An Efficient Route to 3-Aryl-Substituted Quinolin-2-one and 1,8-Naphthyridin-2-one Derivatives of Pharmaceutical Interest. Journal of Organic Chemistry, 2003, 68, 4567-4569.	3.2	30
38	Chemoselective Cyclization of Aminonicotinic Acid Derivatives to 1,8-Naphthyridin-2-ones via a Potential Intramolecular Azadiene-Ketene Electrocyclization Reaction. Journal of Organic Chemistry, 2001, 66, 4413-4415.	3.2	13
39	Reactions of N-Hydroxysuccinimide Esters of Anthranilic Acids with Anions of .BETAKeto Esters. A New Route to 4-Oxo-3-quinolinecarboxylic Acid Derivatives Chemical and Pharmaceutical Bulletin, 2000, 48, 211-214.	1.3	16
40	Regioselective Ring Opening of Malic Acid Anhydrides by Carbon Nucleophiles. Application in the Synthesis of Chiral Tetronic Acids. Journal of Organic Chemistry, 2000, 65, 5852-5853.	3.2	27
41	Synthesis of 3-Substituted 4-Hydroxyquinolin-2-ones via C-Acylation Reactions of Active Methylene Compounds with Functionalized 3,1-Benzoxazin-4-ones. Heterocycles, 1999, 51, 1543.	0.7	17
42	One-Step Synthesis for the Preparation of Quinoline Alkaloid Analogues. Organic Letters, 1999, 1, 1953-1955.	4.6	26
43	A Tandem C-Acylation-Cyclization Reaction Sequence for the Synthesis of New N-Acyl-3-substituted 1 8-Naphthyridine-2 4-diones, Heterocycles, 1999, 51, 1609	0.7	5