Hitesh Kulhari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3273738/publications.pdf

Version: 2024-02-01

63 papers

2,610 citations

30 h-index 189892 50 g-index

66 all docs 66
docs citations

66 times ranked 3789 citing authors

#	Article	IF	CITATIONS
1	Inulin coated Mn3O4 nanocuboids coupled with RNA interference reverse intestinal tumorigenesis in Apc knockout murine colon cancer models. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102504.	3.3	8
2	Genistein encapsulated inulin-stearic acid bioconjugate nanoparticles: Formulation development, characterization and anticancer activity. International Journal of Biological Macromolecules, 2022, 206, 213-221.	7.5	26
3	Improving Anticancer Activity of Chrysin using Tumor Microenvironment pH-Responsive and Self-Assembled Nanoparticles. ACS Omega, 2022, 7, 15919-15928.	3.5	17
4	Introduction to Nanomedicines: Basic Concept and Applications. , 2021, , 1-23.		0
5	Self-assembled and pH-responsive polymeric nanomicelles impart effective delivery of paclitaxel to cancer cells. RSC Advances, 2021, 11, 13928-13939.	3.6	14
6	Biotinylated Mn3O4 nanocuboids for targeted delivery of gemcitabine hydrochloride to breast cancer and MRI applications. International Journal of Pharmaceutics, 2021, 606, 120895.	5.2	15
7	Carrier-free resveratrol nanoparticles: Formulation development, In-vitro anticancer activity, and oral bioavailability evaluation. Materials Letters, 2021, 302, 130340.	2.6	3
8	Dendrimers for diagnostic applications. , 2020, , 291-324.		6
9	Baicalin encapsulating lipid-surfactant conjugate based nanomicelles: Preparation, characterization and anticancer activity. Chemistry and Physics of Lipids, 2020, 233, 104978.	3.2	13
10	N-acetyl-d-glucosamine-conjugated PAMAM dendrimers as dual receptor-targeting nanocarriers for anticancer drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154, 377-386.	4.3	36
11	Solid-state properties, solubility, stability and dissolution behaviour of co-amorphous solid dispersions of baicalin. CrystEngComm, 2020, 22, 6128-6136.	2.6	10
12	Morin hydrate loaded solid lipid nanoparticles: Characterization, stability, anticancer activity, and bioavailability. Chemistry and Physics of Lipids, 2020, 233, 104988.	3.2	25
13	Modulating the Delivery of 5-Fluorouracil to Human Colon Cancer Cells Using Multifunctional Arginine-Coated Manganese Oxide Nanocuboids with MRI Properties. ACS Applied Bio Materials, 2020, 3, 6852-6864.	4.6	17
14	Amorphous nano morin outperforms native molecule in anticancer activity and oral bioavailability. Drug Development and Industrial Pharmacy, 2020, 46, 1123-1132.	2.0	8
15	A nanoscale, biocompatible and amphiphilic prodrug of cabazitaxel with improved anticancer efficacy against 3D spheroids of prostate cancer cells. Materials Advances, 2020, 1, 738-748.	5 . 4	13
16	Site-specific delivery of a natural chemotherapeutic agent to human lung cancer cells using biotinylated 2D rGO nanocarriers. Materials Science and Engineering C, 2020, 112, 110884.	7.3	29
17	Serotonin-Functionalized Vit-E Nanomicelles for Targeting of Irinotecan to Prostate Cancer Cells. ACS Applied Bio Materials, 2020, 3, 5093-5102.	4.6	8
18	Inulin-pluronic-stearic acid based double folded nanomicelles for pH-responsive delivery of resveratrol. Carbohydrate Polymers, 2020, 247, 116730.	10.2	32

#	Article	IF	CITATIONS
19	Serotonin–Stearic Acid Bioconjugate-Coated Completely Biodegradable Mn ₃ O ₄ Nanocuboids for Hepatocellular Carcinoma Targeting. ACS Applied Materials & Interfaces, 2020, 12, 10170-10182.	8.0	26
20	Bombesin receptors as potential targets for anticancer drug delivery and imaging. International Journal of Biochemistry and Cell Biology, 2019, 114, 105567.	2.8	25
21	Modulating the site-specific oral delivery of sorafenib using sugar-grafted nanoparticles for hepatocellular carcinoma treatment. European Journal of Pharmaceutical Sciences, 2019, 137, 104978.	4.0	33
22	Transferrin-conjugated quasi-cubic SPIONs for cellular receptor profiling and detection of brain cancer. Sensors and Actuators B: Chemical, 2019, 297, 126737.	7.8	28
23	Monoclonal Antibody-Conjugated Dendritic Nanostructures for siRNA Delivery. Methods in Molecular Biology, 2019, 1974, 195-201.	0.9	7
24	Inulin: A novel and stretchy polysaccharide tool for biomedical and nutritional applications. International Journal of Biological Macromolecules, 2019, 132, 852-863.	7.5	83
25	Bombesin conjugated solid lipid nanoparticles for improved delivery of epigallocatechin gallate for breast cancer treatment. Chemistry and Physics of Lipids, 2019, 224, 104770.	3.2	50
26	Designing of fatty acid-surfactant conjugate based nanomicelles of morin hydrate for simultaneously enhancing anticancer activity and oral bioavailability. Colloids and Surfaces B: Biointerfaces, 2019, 175, 202-211.	5.0	36
27	A Review of Theranostics Applications and Toxicities of Carbon Nanomaterials. Current Drug Metabolism, 2019, 20, 506-532.	1.2	30
28	Fabrication of surfactant-stabilized nanosuspension of naringenin to surpass its poor physiochemical properties and low oral bioavailability. Phytomedicine, 2018, 40, 48-54.	5.3	56
29	Design of multifunctional peptide collaborated and docetaxel loaded lipid nanoparticles for antiglioma therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 132, 168-179.	4.3	77
30	Designing Twoâ€Dimensional Nanosheets for Improving Drug Delivery to Fucoseâ€Receptorâ€Overexpressing Cancer Cells. ChemMedChem, 2018, 13, 2644-2652.	3.2	14
31	Dendrimer-drug conjugates. , 2018, , 277-303.		4
32	Determination of solubility, stability and degradation kinetics of morin hydrate in physiological solutions. RSC Advances, 2018, 8, 28836-28842.	3.6	39
33	Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPÎ ² CD in polymeric nanoparticles. Drug Delivery, 2017, 24, 224-232.	5.7	85
34	Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: formulation, optimization and <i>in vivo</i> evaluation. Drug Development and Industrial Pharmacy, 2017, 43, 611-617.	2.0	28
35	Peptide grafted and self-assembled poly(\hat{l}^3 -glutamic acid)-phenylalanine nanoparticles targeting camptothecin to glioma. Nanomedicine, 2017, 12, 1661-1674.	3.3	10
36	Poly (amidoamine) dendrimer-mediated hybrid formulation for combination therapy of ramipril and hydrochlorothiazide. European Journal of Pharmaceutical Sciences, 2017, 96, 84-92.	4.0	27

#	Article	IF	CITATIONS
37	Synthesis of (Z)-1-(1,3-diphenyl-1 H-pyrazol-4-yl)-3-(phenylamino)prop-2-en-1-one derivatives as potential anticancer and apoptosis inducing agents. European Journal of Medicinal Chemistry, 2016, 117, 157-166.	5.5	47
38	Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chemistry and Physics of Lipids, 2016, 198, 51-60.	3.2	120
39	Formulation and dosage of therapeutic nanosuspension for active targeting of docetaxel (WO) Tj ETQq1 1 0.7843	314 rgBT / 5.0	Oyerlock 10
40	Improving Efficacy, Oral Bioavailability, and Delivery of Paclitaxel Using Protein-Grafted Solid Lipid Nanoparticles. Molecular Pharmaceutics, 2016, 13, 3903-3912.	4.6	80
41	Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Scientific Reports, 2016, 6, 23179.	3.3	133
42	Cyclic RGDfK Peptide Functionalized Polymeric Nanocarriers for Targeting Gemcitabine to Ovarian Cancer Cells. Molecular Pharmaceutics, 2016, 13, 1491-1500.	4.6	44
43	Optimization of solid lipid nanoparticles prepared by a single emulsification-solvent evaporation method. Data in Brief, 2016, 6, 15-19.	1.0	7 5
44	Biomedical Applications of Trastuzumab: As a Therapeutic Agent and a Targeting Ligand. Medicinal Research Reviews, 2015, 35, 849-876.	10.5	31
45	Cyclic-RGDfK-Directed Docetaxel Loaded Nanomicelles for Angiogenic Tumor Targeting. Methods in Pharmacology and Toxicology, 2015, , 157-168.	0.2	1
46	p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: an in vitro and in vivo evaluation. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	19
47	Design, synthesis and biological evaluation of 1,3-diphenyl-1 H -pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis inducing agents. European Journal of Medicinal Chemistry, 2015, 101, 790-805.	5.5	156
48	Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier. International Journal of Biological Macromolecules, 2015, 80, 48-56.	7.5	118
49	Cyclic-RGDfK peptide conjugated succinoyl-TPGS nanomicelles for targeted delivery of docetaxel to integrin receptor over-expressing angiogenic tumours. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1511-1520.	3.3	51
50	Nanomedicines for targeted delivery of etoposide to non-small cell lung cancer using transferrin functionalized nanoparticles. RSC Advances, 2015, 5, 49122-49131.	3.6	45
51	Characterization, biorecognitive activity and stability of WGA grafted lipid nanostructures for the controlled delivery of Rifampicin. Chemistry and Physics of Lipids, 2015, 193, 11-17.	3.2	34
52	Synthesis and biological evaluation of pyrazolo–triazole hybrids as cytotoxic and apoptosis inducing agents. Organic and Biomolecular Chemistry, 2015, 13, 10136-10149.	2.8	75
53	Bombesin-conjugated nanoparticles improve the cytotoxic efficacy of docetaxel against gastrin-releasing but androgen-independent prostate cancer. Nanomedicine, 2015, 10, 2847-2859.	3.3	33
54	Optimization of carboxylate-terminated poly(amidoamine) dendrimer-mediated cisplatin formulation. Drug Development and Industrial Pharmacy, 2015, 41, 232-238.	2.0	51

HITESH KULHARI

#	Article	IF	CITATION
55	Xanthan gum stabilized gold nanoparticles: Characterization, biocompatibility, stability and cytotoxicity. Carbohydrate Polymers, 2014, 110, 1-9.	10.2	171
56	Peptide conjugated polymeric nanoparticles as a carrier for targeted delivery of docetaxel. Colloids and Surfaces B: Biointerfaces, 2014, 117, 166-173.	5.0	64
57	Colloidal stability and physicochemical characterization of bombesin conjugated biodegradable nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 459-466.	4.7	29
58	Dendrimer–TPGS mixed micelles for enhanced solubility and cellular toxicity of taxanes. Colloids and Surfaces B: Biointerfaces, 2014, 121, 461-468.	5.0	72
59	Fabrication, characterization and bioevaluation of silibinin loaded chitosan nanoparticles. International Journal of Biological Macromolecules, 2014, 69, 267-273.	7.5	65
60	Surface modification of poly (l-lactic acid) microspheres for site-specific delivery of ketoprofen for chronic inflammatory disease. Journal of Drug Targeting, 2013, 21, 232-239.	4.4	1
61	Pharmacokinetic and Pharmacodynamic Studies of Poly(amidoamine) Dendrimer Based Simvastatin Oral Formulations for the Treatment of Hypercholesterolemia. Molecular Pharmaceutics, 2013, 10, 2528-2533.	4.6	47
62	Design and Evaluation of Ocusert for Controlled Delivery of Flurbiprofen Sodium. Current Eye Research, 2011, 36, 436-441.	1.5	9
63	Performance evaluation of PAMAM dendrimer based simvastatin formulations. International Journal of Pharmaceutics, 2011, 405, 203-209.	5.2	89