Sendy Phang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3273015/publications.pdf

Version: 2024-02-01

933264 996849 34 346 10 15 citations g-index h-index papers 34 34 34 234 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Non-spectroscopic sensing enabled by an electro-optical reservoir computer. Optical Materials Express, 2022, 12, 1767.	1.6	3
2	Vibrational Biospectroscopy: An Alternative Approach to Endometrial Cancer Diagnosis and Screening. International Journal of Molecular Sciences, 2022, 23, 4859.	1.8	7
3	Pseudoâ€Waveformâ€Selective Metasurfaces and their Limited Performance. Advanced Theory and Simulations, 2021, 4, 2000187.	1.3	3
4	Mid-infrared sources, based on chalcogenide glass fibres, for biomedical diagnostics. , 2021, , .		1
5	Phased Arrays for Radio Astronomy, Remote Sensing, and Satellite Communications [Book Review]. IEEE Antennas and Propagation Magazine, 2021, 63, 117-118.	1.2	O
6	Wireless Environment as a Service Enabled by Reconfigurable Intelligent Surfaces: The RISE-6G Perspective. , $2021, , .$		73
7	Room temperature mid-infrared fiber lasing beyond 5  µm in chalcogenide glass small-core step index fiber. Optics Letters, 2021, 46, 3504.	1.7	31
8	Wireless power distributions in multi-cavity systems at high frequencies. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20200228.	1.0	2
9	Mid-infrared spectral classification of endometrial cancer compared to benign controls in serum or plasma samples. Analyst, The, 2021, 146, 5631-5642.	1.7	11
10	Bright Mid-Infrared (MIR) Photoluminescence Sources and their Application in Imaging and Sensing. , 2020, , .		1
11	Efficient Statistical Model for Predicting Electromagnetic Wave Distribution in Coupled Enclosures. Physical Review Applied, 2020, $14,\ldots$	1.5	12
12	Analysis of atherosclerotic lesions in the human body. , 2020, , .		0
13	Statistical model for MIMO propagation channel in cavities and random media. , 2020, , .		1
14	A chaotic microresonator structure for an optical implementation of an artificial neural network. , 2020, , .		1
15	Mid-infrared sources for biomedical applications based on chalcogenide glass fibres. , 2020, , .		2
16	High-Frequency Electromagnetic Coupling Calculation Using the Dynamical Energy Analysis by Discrete Flow Method. , $2019, , .$		1
17	Near-Field MIMO Communication Links. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 3027-3036.	3.5	18
18	Strong- and Weak-Damping Limits of the Response of Enclosures to Complex Driving. , 2018, , .		0

#	Article	IF	Citations
19	Resolution enhancement of 2-photon microscopy using high-refractive index microspheres. , 2018, , .		4
20	Finite difference time domain modeling of wavefront aberrations in bone using second harmonic generation microscopy (Conference Presentation). , 2018, , .		0
21	Design and characterization of a diamondâ€shaped monopole antenna. Microwave and Optical Technology Letters, 2017, 59, 2695-2698.	0.9	1
22	Non-interfering channels in a near-field MIMO communication. , 2017, , .		0
23	Statistics of fluctuation in the response of cavities excited by noisy sources. , 2017, , .		0
24	Transmission-line model for a non-linear and dispersive parity-time (PT) symmetric structure., 2017,,.		0
25	Localized Single Frequency Lasing States in a Finite Parity-Time Symmetric Resonator Chain. Scientific Reports, 2016, 6, 20499.	1.6	18
26	Analysis of a near field MIMO wireless channel using 5.6 GHz dipole antennas. , 2016, , .		4
27	Modeling Curved Carbon Fiber Composite (CFC) Structures in the Transmission-Line Modeling (TLM) Method. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 384-390.	1.4	13
28	Coupled Parity-Time symmetric cavities: Results from Transmission Line Modelling simulations. , 2015, , .		1
29	A versatile all-optical parity-time signal processing device using a Bragg grating induced using positive and negative Kerr-nonlinearity. Optical and Quantum Electronics, 2015, 47, 37-47.	1.5	15
30	Highly non-linear optical microresonators for frequency combs generation. Proceedings of SPIE, 2015,	0.8	0
31	Parity-time symmetric coupled microresonators with a dispersive gain/loss. Optics Express, 2015, 23, 11493.	1.7	47
32	Impact of dispersive and saturable gain/loss on bistability of nonlinear parity–time Bragg gratings. Optics Letters, 2014, 39, 2603.	1.7	36
33	Saturable and dispersive parity-time symmetric directional coupler: A transmission-line modelling study. , 2014, , .		1
34	Ultrafast optical switching using parity–time symmetric Bragg gratings. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2984.	0.9	39