
Sunil K Maity

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3272954/publications.pdf Version: 2024-02-01

SUNUL Κ ΜΛΙΤΥ

#	Article	IF	CITATIONS
1	Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renewable and Sustainable Energy Reviews, 2015, 43, 1427-1445.	8.2	338
2	Kinetics of hydrodeoxygenation of stearic acid using supported nickel catalysts: Effects of supports. Applied Catalysis A: General, 2014, 471, 28-38.	2.2	159
3	Opportunities, recent trends and challenges of integrated biorefinery: Part II. Renewable and Sustainable Energy Reviews, 2015, 43, 1446-1466.	8.2	134
4	Hydrodeoxygenation of karanja oil over supported nickel catalysts: influence of support and nickel loading. Catalysis Science and Technology, 2016, 6, 3156-3165.	2.1	48
5	Reforming of vegetable oil for production of hydrogen: A thermodynamic analysis. International Journal of Hydrogen Energy, 2011, 36, 11666-11675.	3.8	35
6	Role of NiMo Alloy and Ni Species in the Performance of NiMo/Alumina Catalysts for Hydrodeoxygenation of Stearic Acid: A Kinetic Study. ACS Omega, 2019, 4, 2833-2843.	1.6	34
7	Kinetics of the reduction of nitrotoluenes by aqueous ammonium sulfide under liquid–liquid phase transfer catalysis. Applied Catalysis A: General, 2006, 301, 251-258.	2.2	30
8	Roles of supports (γ-Al ₂ O ₃ , SiO ₂ , ZrO ₂) and performance of metals (Ni, Co, Mo) in steam reforming of isobutanol. RSC Advances, 2015, 5, 52522-52532.	1.7	30
9	Reaction mechanism and kinetic modeling for the hydrodeoxygenation of triglycerides over alumina supported nickel catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 109-128.	0.8	27
10	Kinetics of hydrodeoxygenation of octanol over supported nickel catalysts: a mechanistic study. RSC Advances, 2014, 4, 41612-41621.	1.7	26
11	Conversion of n- butanol to gasoline range hydrocarbons, butylenes and aromatics. Applied Catalysis A: General, 2016, 526, 28-36.	2.2	25
12	Steam reforming of isobutanol for the production of synthesis gas over Ni/Î ³ -Al2O3 catalysts. RSC Advances, 2013, 3, 24521.	1.7	22
13	Production of green diesel from karanja oil (Pongamia pinnata) using mesoporous NiMo-alumina composite catalysts. Bioresource Technology Reports, 2019, 7, 100288.	1.5	20
14	Techno-economic evaluation of two alternative processes for production of green diesel from karanja oil: A pinch analysis approach. Journal of Renewable and Sustainable Energy, 2019, 11, .	0.8	20
15	Hydrodeoxygenation of stearic acid using Mo modified Ni and Co/alumina catalysts: Effect of calcination temperature. Chemical Engineering Communications, 2020, 207, 904-919.	1.5	19
16	Near-Room-Temperature Synthesis of Sulfonated Carbon Nanoplates and Their Catalytic Application. ACS Sustainable Chemistry and Engineering, 2019, 7, 12707-12717.	3.2	18
17	Dual liquid–liquid extraction versus distillation for the production of bio-butanol from corn, sugarcane, and lignocellulose biomass: A techno-economic analysis using pinch technology. Fuel, 2022, 312, 122932.	3.4	18
18	Alkylation of toluene with isopropyl alcohol catalyzed by Ce-exchanged NaX zeolite. Chemical Engineering Journal, 2005, 114, 39-45.	6.6	17

SUNIL K MAITY

#	Article	IF	CITATIONS
19	Hydrodeoxygenation of karanja oil using ordered mesoporous nickel-alumina composite catalysts. Catalysis Today, 2020, 348, 45-54.	2.2	16
20	Oxidative steam reforming of isobutanol over Ni/Ĵ³-Al2O3 catalysts: A comparison with thermodynamic equilibrium analysis. Journal of Industrial and Engineering Chemistry, 2015, 27, 153-163.	2.9	15
21	Role of CeO2/ZrO2 mole ratio and nickel loading for steam reforming of n-butanol using Ni–CeO2–ZrO2–SiO2 composite catalysts: A reaction mechanism. International Journal of Hydrogen Energy, 2021, 46, 7320-7335.	3.8	14
22	A new mechanistic model for liquid–liquid phase transfer catalysis: Reaction of benzyl chloride with aqueous ammonium sulfide. Chemical Engineering Science, 2009, 64, 4365-4374.	1.9	13
23	Production of Aromatics from <i>n</i> -Butanol over HZSM-5, H-β, and γ-Al ₂ O ₃ : Role of Silica/Alumina Mole Ratio and Effect of Pressure. ACS Sustainable Chemistry and Engineering, 2020, 8, 15230-15242.	3.2	13
24	Techno-Economic Analysis for the Production of 2,3-Butanediol from Brewers' Spent Grain Using Pinch Technology. Industrial & Engineering Chemistry Research, 2022, 61, 2195-2205.	1.8	13
25	Kinetics of Reduction of Nitrotoluenes by H2S-Rich Aqueous Ethanolamine. Industrial & Engineering Chemistry Research, 2006, 45, 7767-7774.	1.8	11
26	Reaction of benzyl chloride with ammonium sulfide under liquid–liquid phase transfer catalysis: Reaction mechanism and kinetics. Journal of Molecular Catalysis A, 2006, 250, 114-121.	4.8	10
27	Reduction of p-nitrotoluene by aqueous ammonium sulfide: Anion exchange resin as a triphasic catalyst. Chemical Engineering Journal, 2008, 141, 187-193.	6.6	10
28	Correlation of solubility of single gases/hydrocarbons in polyethylene using PCâ€SAFT. Asia-Pacific Journal of Chemical Engineering, 2012, 7, 406-417.	0.8	10
29	Etherification of Glycerol with Ethanol over Solid Acid Catalysts: Kinetic Study Using Cation Exchange Resin. Indian Chemical Engineer, 2017, 59, 117-135.	0.9	10
30	Biorefinery Polyutilization Systems: Production of Green Transportation Fuels From Biomass. , 2019, , 373-407.		10
31	Kinetics of phase transfer catalyzed reduction of nitrochlorobenzenes by aqueous ammonium sulfide: Utilization of hydrotreater off-gas for the production of value-added chemicals. Applied Catalysis B: Environmental, 2008, 77, 418-426.	10.8	9
32	Experimental Measurement and Model Based Inferencing of Solubility of Polyethylene in Xylene. Journal of Chemical Engineering of Japan, 2004, 37, 1427-1435. Reduction of combinem altime="siz0.etg" display="infine" overflow="scroll"	0.3	8
33	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" _xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	1.9	7
34	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/x. Thermodynamic evaluation of dry reforming of vegetable oils for production of synthesis gas. Journal of Renewable and Sustainable Energy, 2012, 4, 043120.	0.8	7
35	Biomass, biorefinery, and biofuels. , 2021, , 51-87.		6

Advances in the conversion of methanol to gasoline. , 2022, , 177-200.

SUNIL K MAITY

#	Article	IF	CITATIONS
37	Hydrocarbon biorefinery: A sustainable approach. , 2022, , 1-44.		2
38	Production of jet fuel-range hydrocarbon biofuel by hydroxyalkylation–alkylation of furfural with 2-methylfuran and hydrodeoxygenation of C ₁₅ fuel precursor over a Ni/γ-Al ₂ O ₃ catalyst: a reaction mechanism. Energy Advances, 2022, 1, 99-112.	1.4	2
39	Technological Advancements in the Production of Green Diesel from Biomass. Advances in Sustainability Science and Technology, 2022, , 219-248.	0.4	2
40	Kinetic Modeling of Esterification of Ethylene Glycol with Acetic Acid. , 2010, , .		1
41	Hydrodeoxygenation of triglycerides for the production of green diesel: Role of heterogeneous catalysis. , 2022, , 97-126.		1
42	Techno-economic Analysis for Production of Biodiesel and Green Diesel from Microalgal Oil. Springer Proceedings in Energy, 2021, , 1465-1475.	0.2	0