Rachael I Scahill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3272756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Timing of selective basal ganglia white matter loss in premanifest Huntington's disease. NeuroImage: Clinical, 2022, 33, 102927.	1.4	10
2	Potential disease-modifying therapies for Huntington's disease: lessons learned and future opportunities. Lancet Neurology, The, 2022, 21, 645-658.	4.9	96
3	Neurofilament light-associated connectivity in young-adult Huntington's disease is related to neuronal genes. Brain, 2022, 145, 3953-3967.	3.7	3
4	Fronto-striatal circuits for cognitive flexibility in far from onset Huntington's disease: evidence from the Young Adult Study. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 143-149.	0.9	26
5	Diffusion imaging in Huntington's disease: comprehensive review. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 62-69.	0.9	22
6	Dynamics of Cortical Degeneration Over a Decade in Huntington's Disease. Biological Psychiatry, 2021, 89, 807-816.	0.7	32
7	Brain-derived neurotrophic factor in cerebrospinal fluid and plasma is not a biomarker for Huntington's disease. Scientific Reports, 2021, 11, 3481.	1.6	12
8	Altered iron and myelin in premanifest Huntington's Disease more than 20 years before clinical onset: Evidence from the cross-sectional HD Young Adult Study. EBioMedicine, 2021, 65, 103266.	2.7	20
9	Validating Automated Segmentation Tools in the Assessment of Caudate Atrophy in Huntington's Disease. Frontiers in Neurology, 2021, 12, 616272.	1.1	3
10	Kynurenine pathway metabolites in cerebrospinal fluid and blood as potential biomarkers in Huntington's disease. Journal of Neurochemistry, 2021, 158, 539-553.	2.1	18
11	A Multi-Study Model-Based Evaluation of the Sequence of Imaging and Clinical Biomarker Changes in Huntington's Disease. Frontiers in Big Data, 2021, 4, 662200.	1.8	2
12	Aberrant Striatal Value Representation in Huntington's Disease Gene Carriers 25 Years Before Onset. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 910-918.	1.1	1
13	F05â€Biological and clinical characteristics of gene carriers far from predicted onset in the hd-yas study: a cross-sectional analysis. , 2021, , .		0
14	Composite <scp>UHDRS</scp> Correlates With Progression of Imaging Biomarkers in Huntington's Disease. Movement Disorders, 2021, 36, 1259-1264.	2.2	12
15	Revealing the Timeline of Structural MRI Changes in Premanifest to Manifest Huntington Disease. Neurology: Genetics, 2021, 7, e617.	0.9	20
16	Recommendations to Optimize the Use of Volumetric MRI in Huntington's Disease Clinical Trials. Frontiers in Neurology, 2021, 12, 712565.	1.1	5
17	Volumetric MRI-Based Biomarkers in Huntington's Disease: An Evidentiary Review. Frontiers in Neurology, 2021, 12, 712555.	1.1	3
18	Identifying diseaseâ€associated biomarker network features through conditional graphical model. Biometrics, 2020, 76, 995-1006.	0.8	6

#	Article	IF	CITATIONS
19	Characterizing White Matter in Huntington's Disease. Movement Disorders Clinical Practice, 2020, 7, 52-60.	0.8	20
20	Mutant huntingtin and neurofilament light have distinct longitudinal dynamics in Huntington's disease. Science Translational Medicine, 2020, 12, .	5.8	64
21	Longitudinal Structural <scp>MRI</scp> in Neurologically Healthy Adults. Journal of Magnetic Resonance Imaging, 2020, 52, 1385-1399.	1.9	5
22	Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington's disease Young Adult Study (HD-YAS): a cross-sectional analysis. Lancet Neurology, The, 2020, 19, 502-512.	4.9	122
23	Robust Markers and Sample Sizes for Multicenter Trials of Huntington Disease. Annals of Neurology, 2020, 87, 751-762.	2.8	22
24	The Dementias Platform UK (DPUK) Data Portal. European Journal of Epidemiology, 2020, 35, 601-611.	2.5	45
25	Association of CAG Repeats With Long-term Progression in Huntington Disease. JAMA Neurology, 2019, 76, 1375.	4.5	44
26	Multimodal characterization of the visual network in Huntington's disease gene carriers. Clinical Neurophysiology, 2019, 130, 2053-2059.	0.7	0
27	Cerebrospinal fluid flow dynamics in Huntington's disease evaluated by phase contrast <scp>MRI</scp> . European Journal of Neuroscience, 2019, 49, 1632-1639.	1.2	5
28	Automated Segmentation of Cortical Grey Matter from T1-Weighted MRI Images. Journal of Visualized Experiments, 2019, , .	0.2	0
29	MSH3 modifies somatic instability and disease severity in Huntington's and myotonic dystrophy type 1. Brain, 2019, 142, 1876-1886.	3.7	114
30	Fluid and imaging biomarkers for Huntington's disease. Molecular and Cellular Neurosciences, 2019, 97, 67-80.	1.0	41
31	Apathy Associated With Impaired Recognition of Happy Facial Expressions in Huntington's Disease. Journal of the International Neuropsychological Society, 2019, 25, 453-461.	1.2	6
32	Natural biological variation of white matter microstructure is accentuated in Huntington's disease. Human Brain Mapping, 2018, 39, 3516-3527.	1.9	19
33	Predicting clinical diagnosis in Huntington's disease: An imaging polymarker. Annals of Neurology, 2018, 83, 532-543.	2.8	26
34	Neurofilament light protein in blood predicts regional atrophy in Huntington disease. Neurology, 2018, 90, e717-e723.	1.5	65
35	Cross-sectional and longitudinal voxel-based grey matter asymmetries in Huntington's disease. NeuroImage: Clinical, 2018, 17, 312-324.	1.4	23
36	Apathy and atrophy of subcortical brain structures in Huntington's disease: A two-year follow-up study. NeuroImage: Clinical, 2018, 19, 66-70.	1.4	14

#	Article	IF	CITATIONS
37	An imageâ€based model of brain volume biomarker changes in Huntington's disease. Annals of Clinical and Translational Neurology, 2018, 5, 570-582.	1.7	50
38	Cerebrospinal fluid neurogranin and TREM2 in Huntington's disease. Scientific Reports, 2018, 8, 4260.	1.6	25
39	D10â€Neurofilament light protein in blood predicts regional atrophy in huntington's disease. , 2018, , .		0
40	E11â€Compensation in huntington's disease. , 2018, , .		0
41	F22â€Robust biomarkers of huntington's disease progression: observations from the track-hd, predict-hd and image-hd studies. , 2018, , .		Ο
42	F45â€Apathy associated with impaired recognition of happy facial expressions in huntington's disease. , 2018, , .		0
43	D09â€Parallel evaluation of mutant huntingtin and neurofilament light as biomarkers for huntington's disease: the hd-csf study. , 2018, , .		ο
44	Functional Magnetic Resonance Imaging in Huntington's Disease. International Review of Neurobiology, 2018, 142, 381-408.	0.9	6
45	Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington's disease. Science Translational Medicine, 2018, 10, .	5.8	134
46	Testing a longitudinal compensation model in premanifest Huntington's disease. Brain, 2018, 141, 2156-2166.	3.7	33
47	Magnetic Resonance Imaging in Huntington's Disease. Methods in Molecular Biology, 2018, 1780, 303-328.	0.4	2
48	In vivo characterization of white matter pathology in premanifest huntington's disease. Annals of Neurology, 2018, 84, 497-504.	2.8	53
49	E01â \in Modelling the trajectory of cortical atrophy in huntingtonâ \in Ms disease. , 2018, , .		О
50	F21â€Cag-dependent huntington's disease patterns over decades: the track-hd and track-on studies. , 201 , .	8,	0
51	E07â€Cerebrospinal fluid flow dynamics in huntington's disease using phase contrast MRI: a pilot cross-sectional study. , 2018, , .		Ο
52	F59â€Huntington's disease young adult study (HD-YAS). , 2018, , .		0
53	D08â€Neurofilament light protein in blood as a potential biomarker of neurodegeneration in hungtington's disease: a retrospective cohort analysis. , 2018, , .		0
54	White matter predicts functional connectivity in premanifest Huntington's disease. Annals of Clinical and Translational Neurology, 2017, 4, 106-118.	1.7	38

#	Article	IF	CITATIONS
55	Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington's disease: a retrospective cohort analysis. Lancet Neurology, The, 2017, 16, 601-609.	4.9	272
56	Embodied emotion impairment in Huntington's Disease. Cortex, 2017, 92, 44-56.	1.1	28
57	Operationalizing compensation over time in neurodegenerative disease. Brain, 2017, 140, 1158-1165.	3.7	62
58	Structural and functional brain network correlates of depressive symptoms in premanifest Huntington's disease. Human Brain Mapping, 2017, 38, 2819-2829.	1.9	28
59	Survival End Points for Huntington Disease Trials Prior to a Motor Diagnosis. JAMA Neurology, 2017, 74, 1352.	4.5	12
60	Design optimization for clinical trials in earlyâ€stage manifest Huntington's disease. Movement Disorders, 2017, 32, 1610-1619.	2.2	11
61	1609â€Length of white matter connexions determine their rate of atrophy in premanifest huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A9.2-A9.	0.9	0
62	Structural imaging in premanifest and manifest Huntington disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2017, 144, 247-261.	1.0	18
63	Recommendations for the Use of Automated Gray Matter Segmentation Tools: Evidence from Huntington's Disease. Frontiers in Neurology, 2017, 8, 519.	1.1	31
64	Topological length of white matter connections predicts their rate of atrophy in premanifest Huntington's disease. JCI Insight, 2017, 2, .	2.3	37
65	Quantification of huntingtin protein species in Huntington's disease patient leukocytes using optimised electrochemiluminescence immunoassays. PLoS ONE, 2017, 12, e0189891.	1.1	14
66	D16â€White matter microstructure and natural biological variation in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A39.2-A39.	0.9	0
67	D18â€Brain network breakdown and pathophysiological correlates in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A40.2-A40.	0.9	0
68	D21â€Longitudinal compensation in the cognitive network in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A42.1-A42.	0.9	0
69	Natural variation in sensoryâ€motor white matter organization influences manifestations of Huntington's disease. Human Brain Mapping, 2016, 37, 4615-4628.	1.9	18
70	D9â€An evaluation of methods for the volumetric measurement of grey matter in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A37.1-A37.	0.9	0
71	D20â€Operationalising compensation over time in neurodegenerative disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A41.2-A41.	0.9	0
72	D22â€Compensation in preclinical huntington's disease: evidence from the track-on HD study. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A42.2-A42.	0.9	0

#	Article	IF	CITATIONS
73	Visuospatial Processing Deficits Linked to Posterior Brain Regions in Premanifest and Early Stage Huntington's Disease. Journal of the International Neuropsychological Society, 2016, 22, 595-608.	1.2	44
74	Longitudinal Diffusion Tensor Imaging Shows Progressive Changes in White Matter in Huntington's Disease. Journal of Huntington's Disease, 2015, 4, 333-346.	0.9	31
75	Compensation in Preclinical Huntington's Disease: Evidence From the Track-On HD Study. EBioMedicine, 2015, 2, 1420-1429.	2.7	122
76	Neuropsychiatry and White Matter Microstructure in Huntington's Disease. Journal of Huntington's Disease, 2015, 4, 239-249.	0.9	33
77	Huntington disease. Nature Reviews Disease Primers, 2015, 1, 15005.	18.1	1,031
78	Increased central microglial activation associated with peripheral cytokine levels in premanifest Huntington's disease gene carriers. Neurobiology of Disease, 2015, 83, 115-121.	2.1	133
79	Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington's disease. Brain, 2015, 138, 3327-3344.	3.7	96
80	Short-interval observational data to inform clinical trial design in Huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 1291-1298.	0.9	22
81	The impact of occipital lobe cortical thickness on cognitive task performance: An investigation in Huntington's Disease. Neuropsychologia, 2015, 79, 138-146.	0.7	56
82	Huntington disease: natural history, biomarkers and prospects for therapeutics. Nature Reviews Neurology, 2014, 10, 204-216.	4.9	873
83	White matter integrity in premanifest and early Huntington's disease is related to caudate loss and disease progression. Cortex, 2014, 52, 98-112.	1.1	57
84	Inconsistent emotion recognition deficits across stimulus modalities in Huntington׳s disease. Neuropsychologia, 2014, 64, 99-104.	0.7	20
85	Biomarker development for Huntington's disease. Drug Discovery Today, 2014, 19, 972-979.	3.2	18
86	Correction of inter-scanner and within-subject variance in structural MRI based automated diagnosing. NeuroImage, 2014, 98, 405-415.	2.1	40
87	Test-Retest Reliability of Diffusion Tensor Imaging in Huntington's Disease. PLOS Currents, 2014, 6, .	1.4	11
88	Clinical impairment in premanifest and early Huntington's disease is associated with regionally specific atrophy. Human Brain Mapping, 2013, 34, 519-529.	1.9	113
89	Evaluation of multi-modal, multi-site neuroimaging measures in Huntington's disease: Baseline results from the PADDINGTON study. NeuroImage: Clinical, 2013, 2, 204-211.	1.4	34
90	Structural MRI in Huntington's disease and recommendations for its potential use in clinical trials. Neuroscience and Biobehavioral Reviews, 2013, 37, 480-490.	2.9	81

#	Article	IF	CITATIONS
91	Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington's disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurology, The, 2013, 12, 637-649.	4.9	704
92	Corpus Callosal Atrophy in Premanifest and Early Huntington's Disease. Journal of Huntington's Disease, 2013, 2, 517-526.	0.9	29
93	Recent advances in imaging the onset and progression of Huntington's disease. Neurodegenerative Disease Management, 2013, 3, 241-252.	1.2	0
94	Genetic Influences on Atrophy Patterns in Familial Alzheimer's Disease: A Comparison of APP and PSEN1 Mutations. Journal of Alzheimer's Disease, 2013, 35, 199-212.	1.2	36
95	Longitudinal Neuroimaging Biomarkers in Huntington's Disease. Journal of Huntington's Disease, 2013, 2, 21-39.	0.9	16
96	An event-based model for disease progression and its application in familial Alzheimer's disease and Huntington's disease. NeuroImage, 2012, 60, 1880-1889.	2.1	192
97	Biomarkers for Huntington's disease: an update. Expert Opinion on Medical Diagnostics, 2012, 6, 371-375.	1.6	9
98	Potential endpoints for clinical trials in premanifest and early Huntington's disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurology, The, 2012, 11, 42-53.	4.9	479
99	Biological and clinical changes in premanifest and early stage Huntington's disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurology, The, 2011, 10, 31-42.	4.9	530
100	Early atrophy of pallidum and accumbens nucleus in Huntington's disease. Journal of Neurology, 2011, 258, 412-420.	1.8	121
101	The structural involvement of the cingulate cortex in premanifest and early Huntington's disease. Movement Disorders, 2011, 26, 1684-1690.	2.2	56
102	The progression of regional atrophy in premanifest and early Huntington's disease: a longitudinal voxel-based morphometry study. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 756-763.	0.9	105
103	Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurology, The, 2009, 8, 791-801.	4.9	856
104	Automated quantification of caudate atrophy by local registration of serial MRI: Evaluation and application in Huntington's disease. NeuroImage, 2009, 47, 1659-1665.	2.1	46
105	Defective emotion recognition in early HD is neuropsychologically and anatomically generic. Neuropsychologia, 2008, 46, 2152-2160.	0.7	93
106	P3-062 Predictors and correlates of inter-individual variation in MRI derived atrophy rates in Alzheimer's disease. Neurobiology of Aging, 2004, 25, S369.	1.5	0
107	A Longitudinal Study of Brain Volume Changes in Normal Aging Using Serial Registered Magnetic Resonance Imaging. Archives of Neurology, 2003, 60, 989.	4.9	736
108	Mapping the evolution of regional atrophy in Alzheimer's disease: Unbiased analysis of fluid-registered serial MRI. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4703-4707.	3.3	613

#	Article	IF	CITATIONS
109	Patterns of cerebral atrophy in Alzheimer's disease and semantic dementia: A comparison of voxel based morphometry and region of interest measurements. NeuroImage, 2001, 13, 317.	2.1	0
110	Automated Hippocampal Segmentation by Regional Fluid Registration of Serial MRI: Validation and Application in Alzheimer.s Disease. Lecture Notes in Computer Science, 2001, , 1298-1299.	1.0	0