
Przemyslaw Data

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3272694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Local Triplet Excited States and Dâ€A Relative Orientation in Thermally Activated Delayed Fluorescence: Photophysics and Devices. Advanced Science, 2016, 3, 1600080.	5.6	403
2	Thermally activated delayed fluorescent phenothiazine–dibenzo[a,j]phenazine–phenothiazine triads exhibiting tricolor-changing mechanochromic luminescence. Chemical Science, 2017, 8, 2677-2686.	3.7	356
3	Dibenzo[<i>a,j</i>]phenazine ored Donor–Acceptor–Donor Compounds as Greenâ€ŧoâ€Red/NIR Thermall Activated Delayed Fluorescence Organic Light Emitters. Angewandte Chemie - International Edition, 2016, 55, 5739-5744.	у 7.2	303
4	Highly Efficient TADF OLEDs: How the Emitter–Host Interaction Controls Both the Excited State Species and Electrical Properties of the Devices to Achieve Near 100% Triplet Harvesting and High Efficiency. Advanced Functional Materials, 2014, 24, 6178-6186.	7.8	273
5	Rational Design of TADF Polymers Using a Donor–Acceptor Monomer with Enhanced TADF Efficiency Induced by the Energy Alignment of Charge Transfer and Local Triplet Excited States. Advanced Optical Materials, 2016, 4, 597-607.	3.6	235
6	Regio- and conformational isomerization critical to design of efficient thermally-activated delayed fluorescence emitters. Nature Communications, 2017, 8, 14987.	5.8	235
7	The interplay of thermally activated delayed fluorescence (TADF) and room temperature organic phosphorescence in sterically-constrained donor–acceptor charge-transfer molecules. Chemical Communications, 2016, 52, 2612-2615.	2.2	217
8	Engineering the singlet–triplet energy splitting in a TADF molecule. Journal of Materials Chemistry C, 2016, 4, 3815-3824.	2.7	175
9	Recent Advancements in and the Future of Organic Emitters: TADF―and RTPâ€Active Multifunctional Organic Materials. Chemistry - an Asian Journal, 2019, 14, 1613-1636.	1.7	139
10	Thermally Activated Delayed Fluorescent Donor–Acceptor–Donor–Acceptor π-Conjugated Macrocycle for Organic Light-Emitting Diodes. Journal of the American Chemical Society, 2020, 142, 1482-1491.	6.6	114
11	Conformationally-flexible and moderately electron-donating units-installed D–A–D triad enabling multicolor-changing mechanochromic luminescence, TADF and room-temperature phosphorescence. Chemical Communications, 2018, 54, 6847-6850.	2.2	98
12	Realizing 20% External Quantum Efficiency in Electroluminescence with Efficient Thermally Activated Delayed Fluorescence from an Exciplex. ACS Applied Materials & Interfaces, 2019, 11, 13460-13471.	4.0	84
13	The contributions of molecular vibrations and higher triplet levels to the intersystem crossing mechanism in metal-free organic emitters. Journal of Materials Chemistry C, 2017, 5, 6269-6280.	2.7	83
14	Exciplex Enhancement as a Tool to Increase OLED Device Efficiency. Journal of Physical Chemistry C, 2016, 120, 2070-2078.	1.5	81
15	Thermally activated delayed fluorescence <i>vs.</i> room temperature phosphorescence by conformation control of organic single molecules. Journal of Materials Chemistry C, 2019, 7, 6616-6621.	2.7	74
16	Dibenzo[<i>a,j</i>]phenazine ored Donor–Acceptor–Donor Compounds as Greenâ€ŧoâ€Red/NIR Thermall Activated Delayed Fluorescence Organic Light Emitters. Angewandte Chemie, 2016, 128, 5833-5838.	У _{1.6}	70
17	Thermally activated delayed fluorescence with a narrow emission spectrum and organic room temperature phosphorescence by controlling spin–orbit coupling and phosphorescence lifetime of metal-free organic molecules. Journal of Materials Chemistry C, 2018, 6, 5434-5443.	2.7	56
18	The influence of molecular geometry on the efficiency of thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2019, 7, 6672-6684.	2.7	53

#	Article	IF	CITATIONS
19	Unusual properties of electropolymerized 2,7- and 3,6- carbazole derivatives. Electrochimica Acta, 2014, 128, 430-438.	2.6	50
20	Heavy-Atom-Free Room-Temperature Phosphorescent Organic Light-Emitting Diodes Enabled by Excited States Engineering. ACS Applied Materials & Interfaces, 2021, 13, 2899-2907.	4.0	48
21	Modular Nitrogenâ€Doped Concave Polycyclic Aromatic Hydrocarbons for Highâ€Performance Organic Lightâ€Emitting Diodes with Tunable Emission Mechanisms**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	45
22	Electrochemical and spectroelectrochemical comparison of alternated monomers and their copolymers based on carbazole and thiophene derivatives. Electrochimica Acta, 2014, 122, 118-129.	2.6	44
23	Impedance spectroscopy of OLEDs as a tool for estimating mobility and the concentration of charge carriers in transport layers. Journal of Materials Chemistry C, 2018, 6, 1008-1014.	2.7	44
24	Glass-Forming Carbazolyl and Phenothiazinyl Tetra Substituted Pyrene Derivatives: Photophysical, Electrochemical, and Photoelectrical Properties. Journal of Physical Chemistry C, 2012, 116, 15878-15887.	1.5	43
25	Moving Beyond Boron-Based Substituents To Achieve Phosphorescence in Tellurophenes. ACS Applied Materials & Interfaces, 2018, 10, 12124-12134.	4.0	41
26	Triphenylamine disubstituted naphthalene diimide: elucidation of excited states involved in TADF and application in near-infrared organic light emitting diodes. Journal of Materials Chemistry C, 2018, 6, 8219-8225.	2.7	40
27	An optical and electrical study of full thermally activated delayed fluorescent white organic light-emitting diodes. Scientific Reports, 2017, 7, 6234.	1.6	38
28	Glass forming donor-substituted s-triazines: Photophysical and electrochemical properties. Dyes and Pigments, 2013, 97, 412-422.	2.0	36
29	Alchemy of donor–acceptor–donor multi-photofunctional organic materials: from construction of electron-deficient azaaromatics to exploration of functions. Chemical Communications, 2020, 56, 8884-8894.	2.2	35
30	Observation of Dual Room Temperature Fluorescence–Phosphorescence in Air, in the Crystal Form of a Thianthrene Derivative. Journal of Physical Chemistry C, 2018, 122, 24958-24966.	1.5	31
31	Thermally Activated Delayed Fluorescence in Polymer–Small-Molecule Exciplex Blends for Solution-Processed Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 28796-28802.	4.0	31
32	Influence of heteroaryl group on electrochemical and spectroscopic properties of conjugated polymers. Electrochimica Acta, 2012, 83, 271-282.	2.6	30
33	Electrochemical characterization of alternate conducting carbazole–bisthiophene units. Materials Chemistry and Physics, 2012, 131, 757-763.	2.0	29
34	Electrochemically Induced Synthesis of Triphenylamine-based Polyhydrazones. Electrochimica Acta, 2017, 230, 10-21.	2.6	29
35	Revealing the internal heavy chalcogen atom effect on the photophysics of the dibenzo[<i>a,j</i>]phenazine-cored donor–acceptor–donor triad. Journal of Materials Chemistry C, 2021, 9, 13942-13953.	2.7	29
36	Photoluminescent Polytellurophene Derivatives of Conjugated Polymers as a New Perspective for Molecular Electronics. Macromolecular Chemistry and Physics, 2012, 213, 29-35.	1.1	28

#	Article	IF	CITATIONS
37	Unusual band-gap migration of N-alkylcarbazole-thiophene derivative. Optical Materials, 2011, 33, 1445-1448.	1.7	27
38	Electrochromic Properties of Novel Selenophene and Tellurophene Derivatives Based on Carbazole and Triphenylamine Core. Journal of Physical Chemistry C, 2017, 121, 11027-11036.	1.5	27
39	Electrochemically synthesised xanthone-cored conjugated polymers as materials for electrochromic windows. Electrochimica Acta, 2018, 273, 264-272.	2.6	26
40	High-triplet-level phthalimide based acceptors for exciplexes with multicolor emission. Dyes and Pigments, 2019, 162, 872-882.	2.0	26
41	Donor–Acceptor 1,2,4,5-Tetrazines Prepared by the Buchwald–Hartwig Cross-Coupling Reaction and Their Photoluminescence Turn-On Property by Inverse Electron Demand Diels–Alder Reaction. Journal of Organic Chemistry, 2020, 85, 3407-3416.	1.7	25
42	Starâ€Shaped Conjugated Molecules with Oxa―or Thiadiazole Bithiophene Side Arms. Chemistry - A European Journal, 2016, 22, 11795-11806.	1.7	24
43	Electrochromic behaviour of triazine based ambipolar compounds. Electrochimica Acta, 2016, 192, 283-295.	2.6	23
44	Thermally Activated Delayed Fluorescence Mediated through the Upper Triplet State Manifold in Non-Charge-Transfer Star-Shaped Triphenylamine–Carbazole Molecules. Journal of Physical Chemistry C, 2018, 122, 23934-23942.	1.5	22
45	Hydrazones containing electron-accepting and electron-donating moieties. Dyes and Pigments, 2011, 91, 13-19.	2.0	21
46	Intermolecular interactions in molecular crystals and their effect on thermally activated delayed fluorescence of helicene-based emitters. Journal of Materials Chemistry C, 2018, 6, 10557-10568.	2.7	20
47	Influence of alkyl chain on electrochemical and spectroscopic properties of polyselenophenes. Electrochimica Acta, 2013, 87, 438-449.	2.6	19
48	The regioisomeric effect on the excited-state fate leading to room-temperature phosphorescence or thermally activated delayed fluorescence in a dibenzophenazine-cored donor–acceptor–donor system. Journal of Materials Chemistry C, 2022, 10, 4905-4913.	2.7	18
49	Electrochemically Induced Synthesis of Poly(2,6-carbazole). Macromolecular Rapid Communications, 2015, 36, 1749-1755.	2.0	17
50	Triplet Harvesting with a Simple Aromatic Carbonyl. ChemPhysChem, 2017, 18, 2314-2317.	1.0	17
51	Spectroelectrochemical Analysis of Charge Carriers as a Way of Improving Poly(<i>p</i> -phenylene)-Based Electrochromic Windows. Journal of Physical Chemistry C, 2015, 119, 20188-20200.	1.5	16
52	Electrochemistry and spectroelectrochemistry of polymers based on D-A-D and D-D-D bis(N-carbazolyl) monomers, effect of the donor/acceptor core on their properties. Electrochimica Acta, 2017, 257, 192-202.	2.6	16
53	Electrochemical and optical aspects of cobalt meso-carbazole substituted porphyrin complexes. Electrochimica Acta, 2020, 330, 135140.	2.6	16
54	Evidence for Solid State Electrochemical Degradation Within a Small Molecule OLED. Electrochimica Acta, 2015, 184, 86-93,	2.6	15

#	Article	IF	CITATIONS
55	Synthesis and properties of 1,3,5-tricarbazolylbenzenes with star-shaped architecture. Dyes and Pigments, 2015, 113, 640-648.	2.0	15
56	Synthesis and characterization of chalcogenophene-based monomers with pyridine acceptor unit. Electrochimica Acta, 2016, 210, 773-782.	2.6	15
57	Soluble Flavanthrone Derivatives: Synthesis, Characterization, and Application to Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2016, 22, 7978-7986.	1.7	15
58	Electrochemistry and spectroelectrochemistry of a novel selenophene-based monomer. Electrochimica Acta, 2012, 59, 567-572.	2.6	13
59	Novel acridone-based branched blocks as highly fluorescent materials. Synthetic Metals, 2013, 180, 1-8.	2.1	13
60	Solubility controlled electropolymerisation and study of the impact of regioregularity on the spectroelectrochemical properties of thin films of poly(3-octylthiophenes). Electrochimica Acta, 2014, 122, 66-71.	2.6	13
61	Efficient p-phenylene based OLEDs with mixed interfacial exciplex emission. Electrochimica Acta, 2015, 182, 524-528.	2.6	13
62	Thianthrene-based oligomers as hole transporting materials. Arkivoc, 2012, 2012, 193-209.	0.3	12
63	A New Route to Light Emitting Organic Materials Based on Triazine Derivatives. Journal of Fluorescence, 2010, 20, 1069-1075.	1.3	11
64	Diquinoline Derivatives as Materials for Potential Optoelectronic Applications. Journal of Physical Chemistry C, 2015, 119, 13129-13137.	1.5	11
65	Electrochemically deposited poly(selenophene)-fullerene photoactive layer: Tuning of the spectroscopic properties towards visible light-driven generation of singlet oxygen. Applied Surface Science, 2020, 525, 146594.	3.1	11
66	Dual-photofunctional organogermanium compound based on donor–acceptor–donor architecture. Chemical Communications, 2022, 58, 5889-5892.	2.2	11
67	Acridone-amine D-A-D thermally activated delayed fluorescence emitters with narrow resolved electroluminescence and their electrochromic properties. Electrochimica Acta, 2021, 384, 138347.	2.6	10
68	Advanced Heterocyclic Branched Semiconducting Units - Highly Efficient Synthesis and Physicochemical Characteristic. Current Organic Chemistry, 2013, 17, 283-295.	0.9	10
69	Determination of standard redox rate constants of OLED active compounds by electrochemical impedance spectroscopy. Electrochimica Acta, 2017, 258, 1160-1172.	2.6	9
70	Using Cyclic Voltammetry, UV-Vis-NIR, and EPR Spectroelectrochemistry to Analyze Organic Compounds. Journal of Visualized Experiments, 2018, , .	0.2	9
71	Electrochemical Impedance Spectroscopy as a Tool for Electrochemical Rate Constant Estimation. Journal of Visualized Experiments, 2018, , .	0.2	9
72	Syntheses of Diverse Donor-Substituted Bisbenzofuro[2,3- <i>b</i> :3′,2′- <i>e</i>]pyridines (BBZFPys) via Pd Catalysis, and Their Photophysical Properties. Journal of Organic Chemistry, 2018, 83, 10289-10302.	1.7	9

#	Article	IF	CITATIONS
73	Kesterite Inorganic-Organic Heterojunction for Solution Processable Solar Cells. Electrochimica Acta, 2016, 201, 78-85.	2.6	8
74	Time-resolved Photophysical Characterization of Triplet-harvesting Organic Compounds at an Oxygen-free Environment Using an iCCD Camera. Journal of Visualized Experiments, 2018, , .	0.2	8
75	Electrochemical and Spectroelectrochemical Comparative Study of Macrocyclic Thermally Activated Delayed Fluorescent Compounds: Molecular Charge Stability vs OLED EQE Rollâ€Off. Asian Journal of Organic Chemistry, 2020, 9, 2153-2161.	1.3	8
76	Electrochemically Deposited Zinc (Tetraamino)phthalocyanine as a Light-activated Antimicrobial Coating Effective against S. aureus. Materials, 2022, 15, 975.	1.3	8
77	Organic Thermoelectric Materials as the Waste Heat Remedy. Molecules, 2022, 27, 1016.	1.7	8
78	Convenient Oneâ€Pot Synthesis of 1,2,3,4â€Thiatriazoles Towards a Novel Electron Acceptor for Highlyâ€Efficient Thermallyâ€Activated Delayedâ€Fluorescence Emitters. Chemistry - A European Journal, 2019, 25, 2457-2462.	1.7	7
79	A New Entry to Purely Organic Thermally Activated Delayed Fluorescence Emitters Based on Pyrido[2,3â€ <i>b</i>]pyrazineâ€Dihydrophenazasilines Donorâ€Acceptor Dyad. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	7
80	Modular, nâ€Doped Concave PAHs for Highâ€Performance OLEDs with Tunable Emission Mechanisms Angewandte Chemie, 0, , .	1.6	7
81	The Synthesis and Characterization of -3,4-Ethylenedioxythiophene Derivatives with Electroactive Features. Electrochimica Acta, 2014, 141, 349-356.	2.6	6
82	The impact of replacement of nitrogen with phosphorus atom in the pyromellitic diimides on their photophysical and electrochemical properties. Electrochimica Acta, 2019, 295, 801-809.	2.6	6
83	Covalent Immobilization of Organic Photosensitizers on the Glass Surface: Toward the Formation of the Light-Activated Antimicrobial Nanocoating. Materials, 2021, 14, 3093.	1.3	6
84	The Impact of C 2 Insertion into a Carbazole Donor on the Physicochemical Properties of Dibenzo[a,j]phenazine ored Donor–Acceptor–Donor Triads. Chemistry - A European Journal, 2021, 27, 13390-13398.	1.7	5
85	Triplet Harvesting with a Simple Aromatic Carbonyl. ChemPhysChem, 2017, 18, 2305-2305.	1.0	4
86	Singlet oxygen formation from photoexcited P3HT:PCBM films applied in oxidation reactions. Materials Advances, 2022, 3, 2063-2069.	2.6	4
87	Dibenzophenazine based TADF emitters as dual electrochromic and electroluminescence materials. Chemistry - A European Journal, 2022, , .	1.7	4
88	Synthesis of kesterite nanopowders with bandgap tuning ligands. Crystal Research and Technology, 2015, 50, 743-746.	0.6	3
89	Production and Characterization of Vacuum Deposited Organic Light Emitting Diodes. Journal of Visualized Experiments, 2018, , .	0.2	3
90	Revealing Topological Influence of Phenylenediamine Unit on Physicochemical Properties of Donorâ€Acceptorâ€Donorâ€Acceptor Thermally Activated Delayed Fluorescent Macrocycles. Chemistry - an Asian Journal, 2020, 15, 4098-4103.	1.7	3

#	Article	IF	CITATIONS
91	Peripherally Donor-Installed 7,8-Diaza[5]helicenes as a Platform for Helical Luminophores. Synthesis, 2021, 53, 1584-1596.	1.2	3
92	s-Tetrazine donor-acceptor electrodeposited layer with properties controlled by doping anions generally considered as interchangeable. Electrochimica Acta, 2022, 405, 139788.	2.6	3
93	Novel Easy to Synthesize Benzonitrile Compounds with Mixed Carbazole and Phenoxazine Substituents Exhibiting Dual Emission and TADF Properties. Journal of Physical Chemistry B, 2022, 126, 2740-2753.	1.2	3
94	Raman and IR Spectroelectrochemical Methods as Tools to Analyze Conjugated Organic Compounds. Journal of Visualized Experiments, 2018, , .	0.2	2
95	Comparative study of thermally activated delayed fluorescent properties of donor–acceptor and donor–acceptor–donor architectures based on phenoxazine and dibenzo[<i>a,j</i>]phenazine. Beilstein Journal of Organic Chemistry, 2022, 18, 459-468.	1.3	2
96	Enhancement of the valley splitting in silicon (100) n-type inversion layers by lossless edge currents around Wigner magneto-quantum crystals. Journal of Physics C: Solid State Physics, 1986, 19, 5215-5237.	1.5	1
97	Triplet harvesting at room temperature in metal free organic materials: photophysics and applications (Conference Presentation). , 2016, , .		0
98	Explaining rISC and 100% efficient TADF (Conference Presentation). , 2016, , .		0