
Angela J Glading

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3272055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contribution of protein–protein interactions to the endothelial-barrier-stabilizing function of KRIT1. Journal of Cell Science, 2022, 135, .	1.2	4
2	KRIT1 stabilizes endothelial adherens junctions independent of Rap1 via regulation of β1â€integrin. FASEB Journal, 2021, 35, .	0.2	0
3	Protein Kinase Cî \pm (PkcÎ \pm) Regulates the Nucleocytoplasmic Shuttling of KRIT1. FASEB Journal, 2021, 35, .	0.2	Ο
4	Protein kinase Cα (PKCα) regulates the nucleocytoplasmic shuttling of KRIT1. Journal of Cell Science, 2021, 134, .	1.2	8
5	Disease models in cerebral cavernous malformations. Drug Discovery Today: Disease Models, 2020, 31, 21-29.	1.2	0
6	VEGF signalling enhances lesion burden in KRIT1 deficient mice. Journal of Cellular and Molecular Medicine, 2020, 24, 632-639.	1.6	22
7	Microvascular Mimetics for the Study of Leukocyte–Endothelial Interactions. Cellular and Molecular Bioengineering, 2020, 13, 125-139.	1.0	16
8	Isolation of Cerebral Endothelial Cells from CCM1/KRIT1 Null Mouse Brain. Methods in Molecular Biology, 2020, 2152, 259-265.	0.4	0
9	Measurement of Endothelial Barrier Function in Mouse Models of Cerebral Cavernous Malformations Using Intravital Microscopy. Methods in Molecular Biology, 2020, 2152, 387-400.	0.4	Ο
10	VEGF is required for the initiation of Cerebral Cavernous Malformations. FASEB Journal, 2018, 32, 35.7.	0.2	1
11	Up-regulation of NADPH oxidase-mediated redox signaling contributes to the loss of barrier function in KRIT1 deficient endothelium. Scientific Reports, 2017, 7, 8296.	1.6	51
12	Phospholipase Cε Modulates Rap1 Activity and the Endothelial Barrier. PLoS ONE, 2016, 11, e0162338.	1.1	4
13	Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: Two sides of the same coin. International Journal of Biochemistry and Cell Biology, 2016, 81, 254-270.	1.2	80
14	Control of vascular permeability by adhesion molecules. Tissue Barriers, 2015, 3, e985954.	1.6	57
15	Destabilization of endothelial cellâ€cell contacts modifies inflammatory responses. FASEB Journal, 2015, 29, 418.6.	0.2	Ο
16	KRIT1 Depletion Modifies Endothelial Cell Behavior Through Increased VEGF Signaling. FASEB Journal, 2015, 29, 418.4.	0.2	0
17	Measurement of blood flow velocity for <i>in vivo</i> video sequences with motion estimation methods. Proceedings of SPIE, 2014, , .	0.8	0
18	KRIT1 Protein Depletion Modifies Endothelial Cell Behavior via Increased Vascular Endothelial Growth Factor (VEGF) Signaling, Journal of Biological Chemistry, 2014, 289, 33054-33065.	1.6	54

Angela J Glading

#	Article	IF	CITATIONS
19	Decreased Krev Interaction–Trapped 1 Expression Leads to Increased Vascular Permeability and Modifies Inflammatory Responses In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2702-2710.	1.1	36
20	Rap1 and its effector KRIT1/CCM1 regulate β-catenin signaling. DMM Disease Models and Mechanisms, 2010, 3, 73-83.	1.2	104
21	Rap1 and its effector KRIT1/CCM1 regulate β-catenin signaling. Journal of Cell Science, 2010, 123, e1-e1.	1.2	Ο
22	KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell–cell junctions. Journal of Cell Biology, 2007, 179, 247-254.	2.3	280
23	PEA-15 Inhibits Tumor Cell Invasion by Binding to Extracellular Signal-Regulated Kinase 1/2. Cancer Research, 2007, 67, 1536-1544.	0.4	73
24	Phosphorylation of Phosphoprotein Enriched in Astrocytes (PEA-15) Regulates Extracellular Signal-regulated Kinase-dependent Transcription and Cell Proliferation. Molecular Biology of the Cell, 2005, 16, 3552-3561.	0.9	75
25	Interferon-Inducible Protein 9 (CXCL11)-Induced Cell Motility in Keratinocytes Requires Calcium Flux-Dependent Activation of 1¼-Calpain. Molecular and Cellular Biology, 2005, 25, 1922-1941.	1.1	75
26	Epidermal Growth Factor Activates m-Calpain (Calpain II), at Least in Part, by Extracellular Signal-Regulated Kinase-Mediated Phosphorylation. Molecular and Cellular Biology, 2004, 24, 2499-2512.	1.1	250
27	PEA-15 Binding to ERK1/2 MAPKs Is Required for Its Modulation of Integrin Activation. Journal of Biological Chemistry, 2003, 278, 52587-52597.	1.6	52
28	Activation of m-Calpain (Calpain II) by Epidermal Growth Factor Is Limited by Protein Kinase A Phosphorylation of m-Calpain. Molecular and Cellular Biology, 2002, 22, 2716-2727.	1.1	162
29	Cutting to the chase: calpain proteases in cell motility. Trends in Cell Biology, 2002, 12, 46-54.	3.6	350
30	Membrane Proximal ERK Signaling Is Required for M-calpain Activation Downstream of Epidermal Growth Factor Receptor Signaling. Journal of Biological Chemistry, 2001, 276, 23341-23348.	1.6	186
31	Epidermal Growth Factor Receptor Activation of Calpain Is Required for Fibroblast Motility and Occurs via an ERK/MAP Kinase Signaling Pathway. Journal of Biological Chemistry, 2000, 275, 2390-2398.	1.6	240
32	lp-10 Inhibits Epidermal Growth Factor–Induced Motility by Decreasing Epidermal Growth Factor Receptor–Mediated Calpain Activity. Journal of Cell Biology, 1999, 146, 243-254.	2.3	127
33	Epidermal growth factor receptor-mediated motility in fibroblasts. , 1998, 43, 395-411.		87
34	ls Location Everything? Regulation of the Endothelial CCM Signaling Complex. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	2