

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3271872/publications.pdf Version: 2024-02-01

NINCLI

#	Article	IF	CITATIONS
1	Spinel/Layered Heterostructured Cathode Material for Highâ€Capacity and Highâ€Rate Liâ€Ion Batteries. Advanced Materials, 2013, 25, 3722-3726.	11.1	249
2	Ultrathin Spinel Membrane-Encapsulated Layered Lithium-Rich Cathode Material for Advanced Li-Ion Batteries. Nano Letters, 2014, 14, 3550-3555.	4.5	227
3	Hierarchical Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Nanoplates with Exposed {010} Planes as Highâ€Performance Cathode Material for Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 6756-6760.	11.1	220
4	Graphene in Supercapacitor Applications. Current Opinion in Colloid and Interface Science, 2015, 20, 416-428.	3.4	154
5	Sphere-Shaped Hierarchical Cathode with Enhanced Growth of Nanocrystal Planes for High-Rate and Cycling-Stable Li-Ion Batteries. Nano Letters, 2015, 15, 656-661.	4.5	119
6	The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 9760.	5.2	116
7	Unraveling the Cationic and Anionic Redox Reactions in a Conventional Layered Oxide Cathode. ACS Energy Letters, 2019, 4, 2836-2842.	8.8	111
8	3D coral-like nitrogen-sulfur co-doped carbon-sulfur composite for high performance lithium-sulfur batteries. Scientific Reports, 2015, 5, 13340.	1.6	104
9	Layer-by-Layer Assembled Architecture of Polyelectrolyte Multilayers and Graphene Sheets on Hollow Carbon Spheres/Sulfur Composite for High-Performance Lithium–Sulfur Batteries. Nano Letters, 2016, 16, 5488-5494.	4.5	104
10	Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials?. Journal of Materials Chemistry, 2012, 22, 1489-1497.	6.7	92
11	High-voltage and high-safety nickel-rich layered cathode enabled by a self-reconstructive cathode/electrolyte interphase layer. Energy Storage Materials, 2021, 41, 495-504.	9.5	87
12	Rod-like hierarchical nano/micro Li1.2Ni0.2Mn0.6O2 as high performance cathode materials for lithium-ion batteries. Journal of Power Sources, 2013, 240, 644-652.	4.0	86
13	Renovation of LiCoO 2 with outstanding cycling stability by thermal treatment with Li 2 CO 3 from spent Li-ion batteries. Journal of Energy Storage, 2016, 8, 262-273.	3.9	86
14	Preparation and electrochemical performance of Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, for lithium-ion batteries. Journal of Applied Electrochemistry, 2010, 40, 783-789.	1.5	77
15	The nature of irreversible phase transformation propagation in nickel-rich layered cathode for lithium-ion batteries. Journal of Energy Chemistry, 2021, 62, 351-358.	7.1	74
16	The mechanism of side reaction induced capacity fading of Ni-rich cathode materials for lithium ion batteries. Journal of Energy Chemistry, 2021, 58, 1-8.	7.1	73
17	Strategies of Removing Residual Lithium Compounds on the Surface of <scp>Niâ€Rich</scp> Cathode Materials ^{â€} . Chinese Journal of Chemistry, 2021, 39, 189-198.	2.6	52
18	Enhanced Electrochemical Performance of Layered Lithium-Rich Cathode Materials by Constructing Spinel-Structure Skin and Ferric Oxide Islands. ACS Applied Materials & amp; Interfaces, 2017, 9, 8669-8678.	4.0	50

Ning Li

#	Article	IF	CITATIONS
19	Role of Cobalt Content in Improving the Low-Temperature Performance of Layered Lithium-Rich Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 17910-17918.	4.0	47
20	High-performance LiFePO4/C electrode with polytetrafluoroethylene as an aqueous-based binder. Journal of Power Sources, 2015, 298, 292-298.	4.0	46
21	Research Progress of Lithium Plating on Graphite Anode in <scp>Lithium″on</scp> Batteries. Chinese Journal of Chemistry, 2021, 39, 165-173.	2.6	45
22	Urea-assisted mixed gas treatment on Li-Rich layered oxide with enhanced electrochemical performance. Journal of Energy Chemistry, 2022, 66, 123-132.	7.1	45
23	Layered-rocksalt intergrown cathode for high-capacity zero-strain battery operation. Nature Communications, 2021, 12, 2348.	5.8	43
24	A Universal Method for Enhancing the Structural Stability of Ni-Rich Cathodes Via the Synergistic Effect of Dual-Element Cosubstitution. ACS Applied Materials & Interfaces, 2021, 13, 24925-24936.	4.0	43
25	Correlating the phase evolution and anionic redox in Co-Free Ni-Rich layered oxide cathodes. Nano Energy, 2020, 78, 105365.	8.2	36
26	Anionic Redox Activities Boosted by Aluminum Doping in Layered Sodiumâ€ l on Battery Electrode. Small Methods, 2022, 6, e2101524.	4.6	35
27	Unrevealing the effects of low temperature on cycling life of 21700-type cylindrical Li-ion batteries. Journal of Energy Chemistry, 2021, 60, 104-110.	7.1	31
28	Roles of Fastâ€Ion Conductor LiTaO ₃ Modifying Niâ€rich Cathode Material for Liâ€Ion Batteries. ChemSusChem, 2021, 14, 1955-1961.	3.6	26
29	Advances and Prospects of Surface Modification on <scp>Nickelâ€Rich</scp> Materials for <scp>Lithiumâ€lon</scp> Batteries ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1817-1831.	2.6	24
30	High-Temperature Storage Deterioration Mechanism of Cylindrical 21700-Type Batteries Using Ni-Rich Cathodes under Different SOCs. ACS Applied Materials & Interfaces, 2021, 13, 6286-6297.	4.0	17
31	Progression of the silicate cathode materials used in lithium ion batteries. Science Bulletin, 2013, 58, 575-584.	1.7	15
32	Ultrathin 3 V Spinel Clothed Layered Lithiumâ€Rich Oxides as Heterostructured Cathode for Highâ€Energy and Highâ€Power Liâ€ion Batteries â€. Chinese Journal of Chemistry, 2021, 39, 345-352.	2.6	12
33	Interfacial Degradation and Optimization of Liâ€rich Cathode Materials ^{â€} . Chinese Journal of Chemistry, 2021, 39, 402-420.	2.6	11
34	Methods for promoting electrochemical properties of LiNil/3Col/3Mnl/3O2 for lithium-ion batteries. Science Bulletin, 2013, 58, 1869-1875.	1.7	8
35	Sublimated Seâ€Induced Formation of Dualâ€Conductive Surface Layers for Highâ€Performance Niâ€Rich Layered Cathodes. ChemElectroChem, 2021, 8, 4207-4217	1.7	7
36	Particle Morphology and Electrochemical Performance of LiFePO ₄ Synthesized via Hydrothermal Process at 200 [°] C. Advanced Materials Research, 0, 391-392, 926-930.	0.3	0