
Luca F R Gebert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3271804/publications.pdf Version: 2024-02-01

LUCA F. P. CEREDT

#	Article	IF	CITATIONS
1	Poly(rC)-Binding Protein 1 Limits Hepatitis C Virus Virion Assembly and Secretion. Viruses, 2022, 14, 291.	1.5	5
2	A highly sensitive strand-specific multiplex RT-qPCR assay for quantitation of Zika virus replication. Journal of Virological Methods, 2022, 307, 114556.	1.0	2
3	Molecular Determinants of Flavivirus Virion Assembly. Trends in Biochemical Sciences, 2021, 46, 378-390.	3.7	42
4	Tools and Techniques for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection. Clinical Microbiology Reviews, 2021, 34, .	5.7	205
5	Effectiveness of germicidal ultraviolet light to inactivate coronaviruses on personal protective equipment to reduce nosocomial transmission. Infection Control and Hospital Epidemiology, 2021, , 1-6.	1.0	4
6	Sandfly Fever Sicilian Virus-Leishmania major co-infection modulates innate inflammatory response favoring myeloid cell infections and skin hyperinflammation. PLoS Neglected Tropical Diseases, 2021, 15, e0009638.	1.3	11
7	miR-122–based therapies select for three distinct resistance mechanisms based on alterations in RNA structure. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
8	MiR-CLIP reveals <i>iso</i> -miR selective regulation in the miR-124 targetome. Nucleic Acids Research, 2021, 49, 25-37.	6.5	10
9	A structured RNA motif locks Argonaute2:miR-122 onto the 5' end of the HCV genome. Nature Communications, 2021, 12, 6836.	5.8	11
10	A Moonlighting microRNA: Mechanism(s) of miR-122-Mediated Viral RNA Accumulation. Proceedings (mdpi), 2020, 50, .	0.2	0
11	MicroRNA-9 Fine-Tunes Dendritic Cell Function by Suppressing Negative Regulators in a Cell-Type-Specific Manner. Cell Reports, 2020, 31, 107585.	2.9	8
12	The 8th Canadian Symposium on Hepatitis C virus: "Improving diagnosis and linkage to care― Canadian Liver Journal, 2020, 3, 3-14.	0.3	1
13	Regulation of microRNA function inÂanimals. Nature Reviews Molecular Cell Biology, 2019, 20, 21-37.	16.1	1,556
14	Beyond the seed: structural basis for supplementary micro <scp>RNA</scp> targeting by human Argonaute2. EMBO Journal, 2019, 38, e101153.	3.5	105
15	miR-122 and Ago interactions with the HCV genome alter the structure of the viral 5′ terminus. Nucleic Acids Research, 2019, 47, 5307-5324.	6.5	50
16	Virus discovery reveals frequent infection by diverse novel members of the Flaviviridae in wild lemurs. Archives of Virology, 2019, 164, 509-522.	0.9	11
17	Beyond sites 1 and 2, miR-122 target sites in the HCV genome have negligible contributions to HCV RNA accumulation in cell culture. Journal of General Virology, 2019, 100, 217-226.	1.3	9
18	miR-122 does not impact recognition of the HCV genome by innate sensors of RNA but rather protects the 5′ end from the cellular pyrophosphatases, DOM3Z and DUSP11. Nucleic Acids Research, 2018, 46, 5139-5158.	6.5	53

LUCA F R GEBERT

#	Article	IF	CITATIONS
19	Contemporary Zika Virus Isolates Induce More dsRNA and Produce More Negative-Strand Intermediate in Human Astrocytoma Cells. Viruses, 2018, 10, 728.	1.5	16
20	COMRADES determines in vivo RNA structures and interactions. Nature Methods, 2018, 15, 785-788.	9.0	143
21	Higher Cytopathic Effects of a Zika Virus Brazilian Isolate from Bahia Compared to a Canadian-Imported Thai Strain. Viruses, 2018, 10, 53.	1.5	29
22	The Diverse Roles of microRNAs at the Host–Virus Interface. Viruses, 2018, 10, 440.	1.5	87
23	A survey of medication preparation and administration practices among members of the Canadian Anesthesiologists' Society. Canadian Journal of Anaesthesia, 2018, 65, 1100-1109.	0.7	4
24	Zika virus infection: induction, restriction and evasion of host interferon responses. Future Virology, 2017, 12, 627-630.	0.9	0
25	Analysis of the T Cell Response to Zika Virus and Identification of a Novel CD8+ T Cell Epitope in Immunocompetent Mice. PLoS Pathogens, 2017, 13, e1006184.	2.1	126
26	Unraveling the Mysterious Interactions Between Hepatitis C Virus RNA and Liver-Specific MicroRNA-122. Annual Review of Virology, 2016, 3, 309-332.	3.0	50
27	Zika Virus: Emergence, Phylogenetics, Challenges, and Opportunities. ACS Infectious Diseases, 2016, 2, 763-772.	1.8	25
28	The miR-17 â^1⁄4 92 microRNA Cluster Is a Global Regulator of Tumor Metabolism. Cell Reports, 2016, 16, 1915-1928.	2.9	58
29	A Complex Network of Interactions between S282 and G283 of Hepatitis C Virus Nonstructural Protein 5B and the Template Strand Affects Susceptibility to Sofosbuvir and Ribavirin. Antimicrobial Agents and Chemotherapy, 2016, 60, 2018-2027.	1.4	11
30	Dissecting noncoding and pathogen RNA–protein interactomes. Rna, 2015, 21, 135-143.	1.6	71
31	cis-Acting RNA elements in the hepatitis C virus RNA genome. Virus Research, 2015, 206, 90-98.	1.1	35
32	Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Research, 2014, 42, 609-621.	6.5	283
33	Hepatitis C virus and human miR-122: insights from the bench to the clinic. Current Opinion in Virology, 2014, 7, 11-18.	2.6	29
34	Synthetic pre-microRNAs reveal dual-strand activity of miR-34a on TNF-α. Rna, 2014, 20, 61-75.	1.6	46
35	Chemical Synthesis of Mono―and Bis‣abeled Preâ€MicroRNAs. Angewandte Chemie - International Edition, 2013, 52, 12028-12032.	7.2	27
36	Chemical Synthesis of Mono―and Bis‣abeled Preâ€MicroRNAs. Angewandte Chemie, 2013, 125, 12250-1225	41.6	6

LUCA F R GEBERT

#	Article	IF	CITATIONS
37	RNAi, Antiviral After All. Science, 2013, 342, 207-208.	6.0	18
38	Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28. Nature Structural and Molecular Biology, 2012, 19, 84-89.	3.6	111
39	Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3193-3198.	3.3	268