Albert C AragonÃ"s

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3271588/publications.pdf

Version: 2024-02-01

471371 552653 1,736 31 17 26 citations h-index g-index papers 33 33 33 2268 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Electrostatic catalysis of a Diels–Alder reaction. Nature, 2016, 531, 88-91.	13.7	596
2	Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport. Nano Letters, 2016, 16, 218-226.	4.5	148
3	Measuring the Spinâ€Polarization Power of a Single Chiral Molecule. Small, 2017, 13, 1602519.	5.2	143
4	Multi-Responsive Photo- and Chemo-Electrical Single-Molecule Switches. Nano Letters, 2014, 14, 7064-7070.	4.5	134
5	Single-molecule electrical contacts on silicon electrodes under ambient conditions. Nature Communications, 2017, 8, 15056.	5.8	93
6	Bioengineering a Single-Protein Junction. Journal of the American Chemical Society, 2017, 139, 15337-15346.	6.6	84
7	Chemically and Mechanically Controlled Single-Molecule Switches Using Spiropyrans. ACS Applied Materials & Samp; Interfaces, 2019, 11, 36886-36894.	4.0	69
8	Metal–Single-Molecule–Semiconductor Junctions Formed by a Radical Reaction Bridging Gold and Silicon Electrodes. Journal of the American Chemical Society, 2019, 141, 14788-14797.	6.6	62
9	Study and improvement of aluminium doped ZnO thin films: Limits and advantages. Electrochimica Acta, 2013, 109, 117-124.	2.6	51
10	Highly Conductive Single-Molecule Wires with Controlled Orientation by Coordination of Metalloporphyrins. Nano Letters, 2014, 14, 4751-4756.	4.5	48
11	Metal-Controlled Magnetoresistance at Room Temperature in Single-Molecule Devices. Journal of the American Chemical Society, 2017, 139, 5768-5778.	6.6	41
12	Control over Near-Ballistic Electron Transport through Formation of Parallel Pathways in a Single-Molecule Wire. Journal of the American Chemical Society, 2019, 141, 240-250.	6.6	39
13	The spontaneous formation of single-molecule junctions via terminal alkynes. Nanotechnology, 2015, 26, 381001.	1.3	35
14	Fine‶uning of Singleâ€Molecule Conductance by Tweaking Both Electronic Structure and Conformation of Side Substituents. Chemistry - A European Journal, 2015, 21, 7716-7720.	1.7	33
15	Charge transport at the protein–electrode interface in the emerging field of BioMolecular Electronics. Current Opinion in Electrochemistry, 2021, 28, 100734.	2.5	29
16	Tuning the electrical conductance of metalloporphyrin supramolecular wires. Scientific Reports, 2016, 6, 37352.	1.6	27
17	Building Nanoscale Molecular Wires Exploiting Electrocatalytic Interactions. Electrochimica Acta, 2015, 179, 611-617.	2.6	19
18	Tuning Singleâ€Molecule Conductance in Metalloporphyrinâ€Based Wires via Supramolecular Interactions. Angewandte Chemie - International Edition, 2020, 59, 19193-19201.	7.2	19

#	Article	IF	Citations
19	Mechanical Tuning of Throughâ€Molecule Conductance in a Conjugated Calix[4]pyrrole. ChemistrySelect, 2018, 3, 6473-6478.	0.7	18
20	Tuning Single-Molecule Conductance by Controlled Electric Field-Induced trans-to-cis Isomerisation. Applied Sciences (Switzerland), 2021, 11, 3317.	1.3	11
21	Roomâ€Temperature Spinâ€Dependent Transport in Metalloporphyrinâ€Based Supramolecular Wires. Angewandte Chemie - International Edition, 2021, 60, 25958-25965.	7.2	9
22	Electrochemical gating enhances nearfield trapping of single metalloprotein junctions. Journal of Materials Chemistry C, 2021, 9, 11698-11706.	2.7	6
23	Nearfield trapping increases lifetime of single-molecule junction by one order of magnitude. Cell Reports Physical Science, 2021, 2, 100389.	2.8	6
24	Role of Ring <i>Ortho</i> Substituents on the Configuration of Carotenoid Polyene Chains. Organic Letters, 2018, 20, 493-496.	2.4	5
25	Tuning Singleâ€Molecule Conductance in Metalloporphyrinâ€Based Wires via Supramolecular Interactions. Angewandte Chemie, 2020, 132, 19355-19363.	1.6	5
26	Roomâ€Temperature Spinâ€Dependent Transport in Metalloporphyrinâ€Based Supramolecular Wires. Angewandte Chemie, 2021, 133, 26162-26169.	1.6	5
27	Electric fields as actuators in unimolecular contacts. Current Opinion in Electrochemistry, 2022, 35, 101032.	2.5	1
28	Exploiting the plasmonic trapping in single-molecule junctions., 2021,,.		0
29	Detection of Single-Molecule Reaction Using STM Approach. Protocol Exchange, 0, , .	0.3	О
30	Nearfield Trapping Increases Lifetime of Single-Molecule Junction by One Order of Magnitude. SSRN Electronic Journal, 0, , .	0.4	0
31	(Invited) Chemistry in a Nanoscale Gap. ECS Meeting Abstracts, 2021, MA2021-02, 1640-1640.	0.0	0