
## Joel T Asubar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3271446/publications.pdf Version: 2024-02-01



LOFI T ASUBAD

| #  | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Generalized Frequency Dependent Small Signal Model for High Frequency Analysis of AlGaN/GaN<br>MOS-HEMTs. IEEE Journal of the Electron Devices Society, 2021, 9, 570-581.                                                                                                       | 2.1 | 6         |
| 2  | GaN-based MIS-HEMTs with Al <sub>2</sub> O <sub>3</sub> dielectric deposited by low-cost and environmental-friendly mist-CVD technique. Applied Physics Express, 2021, 14, 031004.                                                                                              | 2.4 | 9         |
| 3  | Controlling surface/interface states in GaN-based transistors: Surface model, insulated gate, and surface passivation. Journal of Applied Physics, 2021, 129, .                                                                                                                 | 2.5 | 58        |
| 4  | Stoichiometric imbalances in Mg-implanted GaN. Japanese Journal of Applied Physics, 2021, 60, 066504.                                                                                                                                                                           | 1.5 | 1         |
| 5  | Ornstein–Uhlenbeck process in a human body weight fluctuation. Physica A: Statistical Mechanics and<br>Its Applications, 2021, 582, 126286.                                                                                                                                     | 2.6 | 1         |
| 6  | Modified Small Signal Circuit of AlGaN/GaN MOS-HEMTs Using Rational Functions. IEEE Transactions on Electron Devices, 2021, 68, 6059-6064.                                                                                                                                      | 3.0 | 3         |
| 7  | Mist chemical vapor deposited-Al <sub>2</sub> O <sub>3</sub> /AlGaN interfacial characterization for GaN MIS-HEMTs. , 2021, , .                                                                                                                                                 |     | 0         |
| 8  | Enhancementâ€Mode AlGaN/GaN Vertical Trench Metal–Insulator–Semiconductor Highâ€Electronâ€Mobility<br>Transistors with a High Drain Current Fabricated Using the AlGaN Regrowth Technique. Physica<br>Status Solidi (A) Applications and Materials Science, 2020, 217, 1900622. | 1.8 | 5         |
| 9  | Design considerations for normally-off operation in Schottky gate p-GaN/AlGaN/GaN HEMTs. Japanese<br>Journal of Applied Physics, 2020, 59, 084002.                                                                                                                              | 1.5 | 11        |
| 10 | Enhancement-Mode AlGaN/GaN MIS-HEMTs With High V <sub>TH</sub> and High I <sub>Dmax</sub><br>Using Recessed-Structure With Regrown AlGaN Barrier. IEEE Electron Device Letters, 2020, 41, 693-696.                                                                              | 3.9 | 39        |
| 11 | Epitaxial growth and characterization of Cr-doped ZnSnAs2thin films on InP substrates. Japanese<br>Journal of Applied Physics, 2020, 59, 030601.                                                                                                                                | 1.5 | 2         |
| 12 | Influence of reactive-ion-etching depth on interface properties in<br>Al <sub>2</sub> O <sub>3</sub> /n-GaN MOS diodes. Japanese Journal of Applied Physics, 2019, 58, 106503.                                                                                                  | 1.5 | 7         |
| 13 | On the presence of Ga2O sub-oxide in high-pressure water vapor annealed AlGaN surface by combined XPS and first-principles methods. Applied Surface Science, 2019, 481, 1120-1126.                                                                                              | 6.1 | 11        |
| 14 | Spatial distribution of substitutional Mn-As clusters in ferromagnetic (Zn,Sn,Mn)As2 thin films<br>revealed by image reconstruction of atom probe tomography data. Journal of Applied Physics, 2019, 125,<br>073902.                                                            | 2.5 | 2         |
| 15 | Impact of SiN capping during Ohmic Annealing on Performance of GaN-based MISHEMTs. , 2019, , .                                                                                                                                                                                  |     | 2         |
| 16 | Analytical derivation of charge relaxation time distribution in transistor from current noise spectrum using inverse integral transformation method. Applied Physics Express, 2018, 11, 031201.                                                                                 | 2.4 | 1         |
| 17 | Impact of rounded electrode corners on breakdown characteristics of AlGaN/GaN high-electron mobility transistors. Applied Physics Express, 2018, 11, 054102.                                                                                                                    | 2.4 | 1         |
| 18 | Correlation of AlGaN/GaN high-electron-mobility transistors electroluminescence characteristics with current collapse. Applied Physics Express, 2018, 11, 024101.                                                                                                               | 2.4 | 4         |

JOEL T ASUBAR

| #  | Article                                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Magnetic phase change in Mn-doped ZnSnAs2 thin films depending on Mn concentration. Journal of Applied Physics, 2018, 123, .                                                                                                                                                                                  | 2.5 | 5         |
| 20 | Characterization of Resistivity and Breakdown Field in Fe-Doped Semi-Insulating Gan Substrates. , 2018, , .                                                                                                                                                                                                   |     | 0         |
| 21 | Study on Threshold Voltage Hysteresis in GaN-Based Vertical Trench MOSFETs. , 2018, , .                                                                                                                                                                                                                       |     | 2         |
| 22 | Improved Current Collapse in AlGaN/GaN MOS-HEMTs with Dual Field-Plates. , 2018, , .                                                                                                                                                                                                                          |     | 2         |
| 23 | Effect of Post-Gate Deposition Annealing on the Electrical Characteristics of AlGaN/GaN HEMTs with p-GaN Gate. , 2018, , .                                                                                                                                                                                    |     | 0         |
| 24 | Electron concentration in highly resistive GaN substrates co-doped with Si, C, and Fe. Japanese Journal of Applied Physics, 2018, 57, 071001.                                                                                                                                                                 | 1.5 | 8         |
| 25 | Improved linearity, stability, and thermal performance of multi-mesa-channel AlGaN/GaN HEMTs. , 2018,<br>1, .                                                                                                                                                                                                 |     | 0         |
| 26 | Reduced current collapse in multi-fingered AlGaN/GaN MOS-HEMTs with dual field plate. , 2017, , .                                                                                                                                                                                                             |     | 3         |
| 27 | Analytical derivation of interface state density from sub-threshold swing in AlGaN/GaN<br>metal–insulator–semiconductor high-electron-mobility transistors. Japanese Journal of Applied<br>Physics, 2017, 56, 104101.                                                                                         | 1.5 | 3         |
| 28 | Effect of reverse bias annealing on the properties of AlGaN/GaN MIS-HEMTs with recessed-gate structure. , 2017, , .                                                                                                                                                                                           |     | 0         |
| 29 | AlGaN/GaN high-electron-mobility transistor technology for high-voltage and low-on-resistance operation. Japanese Journal of Applied Physics, 2016, 55, 070101.                                                                                                                                               | 1.5 | 103       |
| 30 | Large As sublattice distortion in sphalerite ZnSnAs2 thin films revealed by x-ray fluorescence holography. Journal of Applied Physics, 2016, 119, .                                                                                                                                                           | 2.5 | 40        |
| 31 | Highly-stable and low-state-density Al2O3/GaN interfaces using epitaxial n-GaN layers grown on free-standing GaN substrates. Applied Physics Letters, 2016, 109, 162104.                                                                                                                                      | 3.3 | 83        |
| 32 | Insulated gate and surface passivation structures for GaN-based power transistors. Journal Physics D:<br>Applied Physics, 2016, 49, 393001.                                                                                                                                                                   | 2.8 | 172       |
| 33 | Effect of metal electrode edge irregularities on breakdown voltages of AlGaN/GaN HEMTs. , 2016, , .                                                                                                                                                                                                           |     | 1         |
| 34 | Impact of drain electrode shape irregularities on breakdown voltage of AlGaN/GaN HEMTs. , 2016, , .                                                                                                                                                                                                           |     | 0         |
| 35 | Breakdown degradation of AlGaN/GaN HEMTs with multi-finger gate patterns. , 2016, , .                                                                                                                                                                                                                         |     | 1         |
| 36 | AlGaN/GaN metal–insulator–semiconductor high-electron mobility transistors with high on/off<br>current ratio of over 5 × 10 <sup>10</sup> achieved by ozone pretreatment and using ozone oxidant<br>for Al <sub>2</sub> O <sub>3</sub> gate insulator. Japanese Journal of Applied Physics, 2016, 55, 120305. | 1.5 | 21        |

JOEL T ASUBAR

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Highly reduced current collapse in AlGaN/GaN high-electron-mobility transistors by combined<br>application of oxygen plasma treatment and field plate structures. Japanese Journal of Applied Physics,<br>2016, 55, 04EG07.       | 1.5 | 17        |
| 38 | High drain current and low on-resistance in AlGaN/GaN HEMTs with Au-plated ohmic electrodes. , 2015, , .                                                                                                                          |     | 3         |
| 39 | High breakdown voltage AlGaN/GaN HEMTs on free-standing GaN substrate. , 2015, , .                                                                                                                                                |     | 2         |
| 40 | Current collapse in AlGaN/GaN HEMTs with a GaN cap layer. , 2015, , .                                                                                                                                                             |     | 5         |
| 41 | Impact of oxygen plasma treatment on the dynamic on-resistance of AlGaN/GaN high-electron-mobility transistors. Applied Physics Express, 2015, 8, 111001.                                                                         | 2.4 | 22        |
| 42 | Calculating relaxation time distribution function from power spectrum based on inverse integral transformation method. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 738-742.                   | 2.1 | 3         |
| 43 | Interface trap states in Al <sub>2</sub> O <sub>3</sub> /AlGaN/GaN structure induced by inductively coupled plasma etching of AlGaN surfaces. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1075-1080. | 1.8 | 20        |
| 44 | Current Collapse Reduction in AlGaN/GaN HEMTs by High-Pressure Water Vapor Annealing. IEEE<br>Transactions on Electron Devices, 2015, 62, 2423-2428.                                                                              | 3.0 | 31        |
| 45 | Improved current collapse in AlGaN/GaN HEMTs with 3-dimensional field plate structure. , 2015, , .                                                                                                                                |     | 5         |
| 46 | Cu/Al/Mo/Au and Ni/Al/Mo/Au ohmic contacts for AlGaN/GaN heterostructures. , 2015, , .                                                                                                                                            |     | 0         |
| 47 | Characterization of electronic states at insulator/(Al)GaN interfaces for improved insulated gate and surface passivation structures of GaN-based transistors. Japanese Journal of Applied Physics, 2014, 53, 100213.             | 1.5 | 76        |
| 48 | Reduced thermal resistance in AlGaN/GaN multi-mesa-channel high electron mobility transistors.<br>Applied Physics Letters, 2014, 105, 053510.                                                                                     | 3.3 | 33        |
| 49 | Improved current stability in multi-mesa-channel AlGaN/GaN transistors. Physica Status Solidi C:<br>Current Topics in Solid State Physics, 2014, 11, 857-861.                                                                     | 0.8 | 5         |
| 50 | Evaluation of off-bias-stress induced surface charging at AlGaN/GaN surface using a dual-gate transistor structure. Japanese Journal of Applied Physics, 2014, 53, 070301.                                                        | 1.5 | 9         |
| 51 | Current Stability in Multi-Mesa-Channel AlGaN/GaN HEMTs. IEEE Transactions on Electron Devices, 2013, 60, 2997-3004.                                                                                                              | 3.0 | 79        |
| 52 | Zinc-blende MnAs thin films directly grown on InP (001) substrates as possible source of spin-polarized current. Journal of Crystal Growth, 2012, 338, 129-133.                                                                   | 1.5 | 21        |
| 53 | Three Dimensional Local Structure Analysis of ZnSnAs2:Mn by X-ray Fluorescence Holography.<br>Japanese Journal of Applied Physics, 2011, 50, 01BF05.                                                                              | 1.5 | 2         |
| 54 | Annealing Effects on Impurity Band Conduction of ZnSnAs <sub>2</sub> Epitaxial Films. IOP Conference<br>Series: Materials Science and Engineering, 2011, 21, 012031.                                                              | 0.6 | 4         |

JOEL T ASUBAR

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Ferromagnetic ZnSnAs2:Mn Chalcopyrite Semiconductors for InP-based Spintronics. E-Journal of Surface Science and Nanotechnology, 2011, 9, 95-102.                                               | 0.4 | 4         |
| 56 | Anomalous Hall Effect and Magnetoresistance in Mn-Doped ZnSnAs2Epitaxial Film on InP Substrates.<br>Japanese Journal of Applied Physics, 2011, 50, 01BE12.                                      | 1.5 | 3         |
| 57 | Room-Temperature Ferromagnetism in (Zn,Mn,Sn)As2Thin Films Applicable to InP-Based Spintronic<br>Devices. Japanese Journal of Applied Physics, 2011, 50, 05FB02.                                | 1.5 | 5         |
| 58 | Anomalous Hall Effect and Magnetoresistance in Mn-Doped ZnSnAs <sub>2</sub> Epitaxial Film on InP<br>Substrates. Japanese Journal of Applied Physics, 2011, 50, 01BE12.                         | 1.5 | 9         |
| 59 | Three Dimensional Local Structure Analysis of ZnSnAs <sub>2</sub> :Mn by X-ray Fluorescence<br>Holography. Japanese Journal of Applied Physics, 2011, 50, 01BF05.                               | 1.5 | 8         |
| 60 | Room-Temperature Ferromagnetism in (Zn,Mn,Sn)As2Thin Films Applicable to InP-Based Spintronic<br>Devices. Japanese Journal of Applied Physics, 2011, 50, 05FB02.                                | 1.5 | 2         |
| 61 | High-Resolution X-ray Diffraction Studies of ZnSnAs2 Epitaxial Films Nearly Lattice-matched to InP<br>Substrates. Physics Procedia, 2010, 3, 1351-1356.                                         | 1.2 | 13        |
| 62 | Effect of thermal annealing on the properties of narrow-bandgap ZnSnAs2 epitaxial films on InP(001) substrates. Physics Procedia, 2010, 3, 1341-1344.                                           | 1.2 | 12        |
| 63 | Fabrication and structural characterization of nearly lattice-matched p-ZnSnAs2/n-InP heterojunctions. , 2009, , .                                                                              |     | 0         |
| 64 | Impurity band conduction and negative magnetoresistance in pâ€ZnSnAs <sub>2</sub> thin films. Physica<br>Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1158-1161.            | 0.8 | 15        |
| 65 | MBE growth of Mn-doped ZnSnAs2 thin films. Journal of Crystal Growth, 2009, 311, 929-932.                                                                                                       | 1.5 | 42        |
| 66 | Low-temperature annealing effects on (Ga,Mn)As/Zn-GaAs superlattice structures grown on GaAs(001) substrates. Journal of Crystal Growth, 2009, 311, 933-936.                                    | 1.5 | 2         |
| 67 | MBE growth and properties of GeMn thin films on (001) GaAs. Journal of Crystal Growth, 2009, 311, 937-940.                                                                                      | 1.5 | 6         |
| 68 | Comparison of annealing effects on Zn-doped GaMnAs and undoped GaMnAs epilayers. Applied Surface<br>Science, 2008, 254, 6648-6652.                                                              | 6.1 | 2         |
| 69 | Electrotransport Properties of p-ZnSnAs <sub>2</sub> Thin Films Grown by Molecular Beam Epitaxy on<br>Semi-insulating (001) InP Substrates. Japanese Journal of Applied Physics, 2008, 47, 657. | 1.5 | 18        |
| 70 | MBE growth of Mn-doped Zn–Sn–As compounds on (001) InP substrates. Journal of Crystal Growth, 2007, 301-302, 656-661.                                                                           | 1.5 | 24        |
| 71 | MBE growth and properties of GaMnAs with high level of Zn acceptor incorporation. Physica Status<br>Solidi (A) Applications and Materials Science, 2006, 203, 2778-2782.                        | 1.8 | 13        |