Yolanda Salinas

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3271058/yolanda-salinas-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,480 38 14 30 h-index g-index citations papers 1,661 41 7.2 4.35 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
30	Immobilized Poly(anthraquinones) for Electrochemical Energy Storage Applications: Structure-Property Relations. <i>ChemElectroChem</i> , 2021 , 8, 4360	4.3	O
29	Reversible Speed Regulation of Self-Propelled Janus Micromotors via Thermoresponsive Bottle-Brush Polymers. <i>Chemistry - A European Journal</i> , 2021 , 27, 3262-3267	4.8	5
28	Reversible Speed Regulation of Self-Propelled Janus Micromotors via Thermoresponsive Bottle-Brush Polymers. <i>Chemistry - A European Journal</i> , 2021 , 27, 3192	4.8	
27	Peptide nucleic acid stabilized perovskite nanoparticles for nucleic acid sensing. <i>Materials Today Chemistry</i> , 2020 , 17, 100272	6.2	3
26	Visible Light Photocleavable Ruthenium-Based Molecular Gates to Reversibly Control Release from Mesoporous Silica Nanoparticles. <i>Nanomaterials</i> , 2020 , 10,	5.4	6
25	Controlling Quantum Confinement in Luminescent Perovskite Nanoparticles for Optoelectronic Devices by the Addition of Water. <i>ACS Applied Nano Materials</i> , 2020 , 3, 1242-1249	5.6	11
24	Synthesis conditions influencing formation of MAPbBr perovskite nanoparticles prepared by the ligand-assisted precipitation method. <i>Scientific Reports</i> , 2020 , 10, 15720	4.9	9
23	Anti-Stokes photoluminescence study on a methylammonium lead bromide nanoparticle film. <i>Nanoscale</i> , 2020 , 12, 16556-16561	7.7	2
22	Dual stimuli-responsive polyphosphazene-based molecular gates for controlled drug delivery in lung cancer cells <i>RSC Advances</i> , 2020 , 10, 27305-27314	3.7	8
21	Trends in Degradable Mesoporous Organosilica-Based Nanomaterials for Controlling Drug Delivery: A Mini Review. <i>Materials</i> , 2020 , 13,	3.5	9
20	Cyclic Peptide Stabilized Lead Halide Perovskite Nanoparticles. <i>Scientific Reports</i> , 2019 , 9, 12966	4.9	7
19	Surfactant-Free Synthesis of Cyclomatrix and Linear Organosilica Phosphazene-Based Hybrid Nanoparticles. <i>ACS Applied Nano Materials</i> , 2019 , 2, 655-660	5.6	6
18	Proteinogenic Amino Acid Assisted Preparation of Highly Luminescent Hybrid Perovskite Nanoparticles. <i>ACS Applied Nano Materials</i> , 2019 , 2, 4267-4274	5.6	17
17	Improving the Performance of Perovskite Solar Cells using a Polyphosphazene Interfacing Layer. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2019 , 216, 1900436	1.6	4
16	Mesoporous Silica Micromotors with a Reversible Temperature Regulated On-Off Polyphosphazene Switch. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1900328	4.8	7
15	An L-proline based thermoresponsive and pH-switchable nanogel as a drug delivery vehicle. <i>Polymer Chemistry</i> , 2018 , 9, 2271-2280	4.9	16
14	Biocompatible Phenylboronic-Acid-Capped ZnS Nanocrystals Designed As Caps in Mesoporous Silica Hybrid Materials for on-Demand pH-Triggered Release In Cancer Cells. <i>ACS Applied Materials & Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS ACS APPLIED MATERIAL ACS APPLI</i>	9.5	11

LIST OF PUBLICATIONS

13	Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water. <i>Chemical Communications</i> , 2017 , 53, 3559-3562	5.8	18
12	Molecularly Imprinted Polymer Coated Quantum Dots for Multiplexed Cell Targeting and Imaging. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8244-8	16.4	110
11	Smart Polymeric Nanoparticles as Emerging Tools for ImagingThe Parallel Evolution of Materials. <i>Chemistry - A European Journal</i> , 2016 , 22, 3612-20	4.8	14
10	Chromo-fluorogenic detection of nitroaromatic explosives by using silica mesoporous supports gated with tetrathiafulvalene derivatives. <i>Chemistry - A European Journal</i> , 2014 , 20, 855-66	4.8	21
9	A chromogenic sensor array for boiled marinated turkey freshness monitoring. <i>Sensors and Actuators B: Chemical</i> , 2014 , 190, 326-333	8.5	29
8	A novel colorimetric sensor array for monitoring fresh pork sausages spoilage. <i>Food Control</i> , 2014 , 35, 166-176	6.2	94
7	Fluorogenic detection of Tetryl and TNT explosives using nanoscopic-capped mesoporous hybrid materials. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 3561	13	44
6	Tetrathiafulvalene-capped hybrid materials for the optical detection of explosives. <i>ACS Applied Materials & Amp; Interfaces</i> , 2013 , 5, 1538-43	9.5	26
5	Organic-Inorganic Hybrid Mesoporous Materials as Regenerable Sensing Systems for the Recognition of Nitroaromatic Explosives. <i>ChemPlusChem</i> , 2013 , 78, 684-694	2.8	15
4	Monitoring of chicken meat freshness by means of a colorimetric sensor array. <i>Analyst, The</i> , 2012 , 137, 3635-43	5	87
3	Optical chemosensors and reagents to detect explosives. <i>Chemical Society Reviews</i> , 2012 , 41, 1261-96	58.5	883
2	Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles. <i>Chemical Communications</i> , 2011 , 47, 11885-7	5.8	18
1	Stability Enhancements on Methylammonium Lead-Based Perovskite Nanoparticles: the Smart Use of Host Matrices. <i>Israel Journal of Chemistry</i> ,	3.4	O