Peter A Abrams

List of Publications by Year in descending order

[^0]Further evidence that Antarctic toothfish are important to Weddell seals. Antarctic Science, 2021, 33,$1 \quad \begin{aligned} & \text { Further } \\ & 17-29 .\end{aligned}$2 Antarctic fisheries: factor climate change into their management. Nature, 2018, 558, 177-180.27.836
Necessary elements of precautionary management: implications for the Antarctic toothfish. Fish and 5.3
Fisheries, 2016, 17, 1152-1174.Hydra effects in stable communities and their implications for system dynamics. Ecology, 2016, 97,1135-1145.Paradoxical effects and interactions in food webs: a commentary on Nilsson and McCann (2016).Theoretical Ecology, 2016, 9, 513-517.
1.0 0
Ideal gas model adequately describes movement and school formation in a pelagic freshwater fish.
6 Behavioral Ecology, 2015, 26, 1236-1247. 2.2 4The many potential indirect interactions between predators that share competing prey. Ecological7 The many potential indirect intera
Monographs, 2015, 85, 625-641.
5.4 23
8 Why ratio dependence is (still) a bad model of predation. Biological Reviews, 2015, 90, 794-814.10.4

9 The evolutionary and behavioral modification of consumer responses to environmental change.
9 Journal of Theoretical Biology, 2014, 343, 162-173.
11 Is feedback control effective for ecosystem-based fisheries management?. Journal of Theoretical
Biology, 2013, 339, 122-128.
1.7 16
12 Does consumption rate scale superlinearly?. Nature, 2013, 493, E1-E2.27.86
13 Harvesting creates ecological traps: consequences of invisible mortality risks in predatorâ€"prey 3.2 26 metacommunities. Ecology, 2012, 93, 281-293.Modifying modifiers: what happens when interspecific interactions interact?. Journal of AnimalEcology, 2011, 80, 1097-1108.2.845The roles of spatial heterogeneity and adaptive movement in stabilizing (or destabilizing) simplemetacommunities. Journal of Theoretical Biology, 2011, 291, 76-87.1.715A multi-scale comparison of trait linkages to environmental and spatial variables in fish communitiesacross a large freshwater lake. Oecologia, 2011, 166, 819-831.
metacommunities with homogeneous patches?. Journal of Theoretical Biology, 2011, 277, 99-110.

Simple Life-History Omnivory: Responses to Enrichment and Harvesting in Systems with Intraguild
Predation. American Naturalist, 2011, 178, 305-319.

```
1 9 \text { Quantitative descriptions of resource choice in ecological models. Population Ecology, 2010, 52,}
47-58.
```

Prey persistence and abundance in systems with intraguild predation and type-2 functional responses.
20 Journal of Theoretical Biology, 2010, 264, 1033-1042.
1.7

37

Prey lifeâ€history and bioenergetic responses across a predation gradient. Journal of Fish Biology, 2010,
1.6 77, 1230-1251.
Adaptive changes in prey vulnerability shape the response of predator populations to mortality.
Journal of Theoretical Biology, 2009, 261, 294-304.
27 DETERMINANTS OF THE STRENGTH OF DISRUPTIVE AND/OR DIVERGENT SELECTION ARISING FROM RESOURCE
$27 \quad$ COMPETITION. Evolution; International Journal of Organic Evolution, 2008, 62, 1571-1586. 2.3
Switching behavior, coexistence and diversification: comparing empirical communityâ€wide evidence with theoretical predictions. Ecology Letters, 2008, 11, 802-808. 6.4 45
29 Lazy males? Bioenergetic differences in energy acquisition and metabolism help to explain sexual size 2.8 71
dimorphism in percids. Journal of Animal Ecology, 2008, 77, 916-926.32
REVISITING THE CLASSICS: CONSIDERING NONCONSUMPTIVE EFFECTS IN TEXTBOOK EXAMPLES OF PREDATORâ€"PREY INTERACTIONS. Ecology, 2008, 89, 2416-2425. 30
3.2
3.2 401 37
Competitionâ€Similarity Relationships and the Nonlinearity of Competitive Effects in Consumerâ€Resource Competitionâ€Similarity Relationships and the Nonl
Systems. American Naturalist, 2008, 172, 463-474. 2.1 2.1MEASURING THE IMPACT OF DYNAMIC ANTIPREDATOR TRAITS ON PREDATORâ€"PREYâ€"RESOURCE3.245
INTERACTIONS. Ecology, 2008, 89, 1640-1649.33 Mutualism? Variations on Two Themes by Vandermeer. American Naturalist, 2007, 170, 744-757.2.120DEFINING AND MEASURING THE IMPACT OF DYNAMIC TRAITS ON INTERSPECIFIC INTERACTIONS. Ecology,2007, 88, 2555-2562.
37 Landscape scale, heterogeneity, and the viability of Serengeti grazers. Ecology Letters, 2005, 8, 328-335. 6.4

38 â $€^{\sim}$ Adaptive Dynamicsâ $€^{T M}$ vs. â€ $€^{\sim}$ adaptive dynamicsâ $€^{T M}$. Journal of Evolutionary Biology, 2005, 18, 1162-1165. 1.7

39	Optimal life histories and food web position: linkages among somatic growth, reproductive investment, and mortality. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 738-746.	1.4	65
40	Introducing the symposium "Building on Beverton's legacy: life history variation and fisheries management". Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 725-729.	1.4	5
41	The effect of adaptive change in the prey on the dynamics of an exploited predator population. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 758-766.	1.4	78
42	The impact of mortality on predator population size and stability in systems with stage-structured prey. Theoretical Population Biology, 2005, 68, 253-266.	1.1	62
43	The interaction between reproductive lifespan and protandry in seasonal breeders. Journal of Evolutionary Biology, 2004, 17, 768-778.	1.7	18

44 | Coexistence of competitors in metacommunities due to spatial variation in resource growth rates; |
| :--- |
| does Râ€Š* predict the outcome of competition?. Ecology Letters, 2004, 7, 929-940. |

$45 \quad 63$

$46 \quad$| Consequences of behavioral dynamics for the population dynamics of predator-prey systems with |
| :--- |
| switching. Population Ecology, 2004, 46, 13. |

$47 \quad$| The prevalence of asymmetrical indirect effects in two-hostấ"one-parasitoid systems. Theoretical |
| :--- |
| Population Biology, 2004, 66, 71-82. |

$48 \quad$| Effects of predatorÂ-prey interactions and adaptive change on sustainable yield. Canadian Journal of |
| :--- |
| Fisheries and Aquatic Sciences, 2004, 61, 175-184. |

$49 \quad 1.2$

50	WHEN DOES PERIODIC VARIATION IN RESOURCE GROWTH ALLOW ROBUST COEXISTENCE OF COMPETING
CONSUMER SPECIES?. Ecology, 2004, 85, 372-382.	

```
51 TRAIT-INITIATED INDIRECT EFFECTS DUE TO CHANGES IN CONSUMPTION RATES IN SIMPLE FOOD WEBS.
    Ecology, 2004, 85, 1029-1038.
```

Population dynamical consequences of reduced predator switching at low total prey densities.
Population Ecology, 2003, 45, 175-185.

Effects of altered resource consumption rates by one consumer species on a competitor. Ecology
Indirect effects of zebra mussels (Dreissena polymorpha) on the planktonic food web. Canadian
Journal of Fisheries and Aquatic Sciences, 2003, 60, 1353-1368.
1.433

56 Dynamic versus Instantaneous Models of Diet Choice. American Naturalist, 2003, 162, 668-684.
$2.1 \quad 41$

57	The Impact of Consumerâ€"Resource Cycles on the Coexistence of Competing Consumers. Theoretical Population Biology, 2002, 62, 281-295.
58	
The interaction between predation and competition: a review and synthesis. Ecology Letters, 2002, 5, $302-315$.	1.1

62	THE IMPACT OF HABITAT SELECTION ON THE SPATIAL HETEROGENEITY OF RESOURCES IN VARYING	3.2
ENVIRONMENTS. Ecology, 2000, 81, 2902-2913.	48	
		2.1

64 IS PREDATOR-MEDIATED COEXISTENCE POSSIBLE INUNSTABLE SYSTEMS?. Ecology, 1999, 80, 608-621. 3.2

65	Adaptive Host Preference and the Dynamics of Hostâ€ "Parasitoid Interactions. Theoretical Population Biology, 1999, 56, 307-324.	1.1	37
66	High Competition with Low Similarity and Low Competition with High Similarity: Exploitative and Apparent Competition in Consumerấ Resource Systems. American Naturalist, 1998, 152, 114-128.	2.1	79
67	APPARENT COMPETITION OR APPARENT MUTUALISM? SHARED PREDATION WHEN POPULATIONS CYCLE. Ecology, 1998, 79, 201-212.	3.2	176

68 Anomalous Predictions of Ratio-Dependent Models of Predation. Oikos, 1997, 80, 163. 2.7 49
69 Variability and Adaptive Behavior: Implications for Interactions between Stream Organisms. Journal of the North American Benthological Society, 1997, 16, 358-374. $3.1 \quad 12$

Fitness minimization and dynamic instability as a consequence of predatorâ€"prey coevolution.
73 Invulnerable Prey and the Paradox of Enrichment. Ecology, 1996, 77, 1125-1133. 3.2

74 The Effect of Flexible Growth Rates on Optimal Sizes and Development Times in a Seasonal	
Environment. American Naturalist, 1996,147, 381-395.	
75	Fitness minimization and dynamic instability as a consequence of predator-prey coevolution. Evolutionary Ecology, 1996, 10, 167-186.
4.2	

76 Effects of predator-specific defence on biodiversity and community complexity in two-trophic-level
1.2

81 communities. Evolutionary Ecology, 1996, 10, 13-28.
$77 \quad$ Positive Indirect Effects Between Prey Species that Share Predators. Ecology, 1996, 77, 610-616.
$3.2 \quad 247$

78 Limits to the Similarity of Competitors Under Hierarchical Lottery Competition. American Naturalist, 1996, 148, 211-219.

Implications of Dynamically Variable Traits for Identifying, Classifying, and Measuring Direct and
Indirect Effects in Ecological Communities. American Naturalist, 1995, 146, 112-134.
2.1

433

80 Monotonic or Unimodal Diversity-Productivity Gradients: What Does Competition Theory Predict?.

Ecology, 1995, 76, 2019-2027.
3.2

371

> Overestimation Versus Underestimation of Predation Risk: A Reply to Bouskila et al.. American
> Naturalist, 1995, 145, 1020-1024.

82 Should Prey Overestimate the Risk of Predation?. American Naturalist, 1994, 144, 317-328.
2.1

67

> The Effects of Enrichment of Three-Species Food Chains with Nonlinear Functional Responses.
> Ecology, 1994, 75, 1118-1130.
$3.2 \quad 129$

84 Effects of predator-specific defence on community complexity. Evolutionary Ecology, 1994, 8, 628-638.
1.2

55

85 The evolution of traits that determine ability in competitive contests. Evolutionary Ecology, 1994, 8,
$1.2 \quad 46$
667-686.

86 The responses of unstable food chains to enrichment. Evolutionary Ecology, 1994, 8, 150-171.
1.2

107

Timid Consumers: Self-Extinction Due to Adaptive Change in Foraging and Anti-predator Effort.
Theoretical Population Biology, 1994, 45, 76-91.
1.1

89

Evolutionarily Stable Growth Rates in Size-Structured Populations Under Size-Related Competition.
1.1

11
Theoretical Population Biology, 1994, 46, 78-95.

89 The Fallacies of "Ratio-Dependent" Predation. Ecology, 1994, 75, 1842-1850.

Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits. Evolutionary
Ecology, 1993, 7, 465-487.

91	Effects of adaptive predatory and anti-predator behaviour in a two-prey?one-predator system. Evolutionary Ecology, 1993, 7, 312-326.	1.2	99
92	Why Predation Rate Should Not be Proportional to Predator Density. Ecology, 1993, 74, 726-733.	3.2	125
93	Optimal traits when there are several costs: the interaction of mortality and energy costs in determining foraging behavior. Behavioral Ecology, 1993, 4, 246-259.	2.2	47
94	Effect of Increased Productivity on the Abundances of Trophic Levels. American Naturalist, 1993, 141, 351-371.	2.1	219
95	Predators that Benefit Prey and Prey that Harm Predators: Unusual Effects of Interacting Foraging Adaptation. American Naturalist, 1992, 140, 573-600.	2.1	185
96	Possible indirect interactions between transient and resident killer whales: implications for the evolution of foraging specializations in the genus Orcinus. Oecologia, 1992, 89, 125-132.	2.0	128
97	Why don't predators have positive effects on prey populations?. Evolutionary Ecology, 1992, 6, 449-457.	1.2	39

98 Adaptive foraging by predators as a cause of predator-prey cycles. Evolutionary Ecology, 1992, 6, 56-72.
99 Strengths of Indirect Effects Generated by Optimal Foraging. Oikos, 1991, 62, 167. 2.7
100 The effects of interacting species on predator-prey coevolution. Theoretical Population Biology, 1991, 39, 241-262.
101 The fitness costs of senescence: The evolutionary importance of events in early adult life.
Evolutionary Ecology, 1991, 5, 343-360. 78
102 The Predictive Ability of Peer Review of Grant Proposals: The Case of Ecology and the US NationalScience Foundation. Social Studies of Science, 1991, 21, 111-132.2.530
103 Life History and the Relationship Between Food Availability and Foraging Effort. Ecology, 1991, 72, 3.2 203
104 Mixed responses to resource densities and their implications for character displacement. Evolutionary Ecology, 1990, 4, 93-102. 1.2 29
105 Adaptive responses of generalist herbivores to competition: Convergence or divergence. Evolutionary 1.2 29
Ecology, 1990, 4, 103-114.1.7
106 Should co-operative groups be more vigilant than selfish groups?. Journal of Theoretical Biology, 1990, 142, 341-357.
41
2.7 50
107 Ecological vs Evolutionary Consequences of Competition. Oikos, 1990, 57, 147.

\#	Article	IF	Citations
109	The importance of intraspecific frequency-dependent selection in modelling competitive coevolution. Evolutionary Ecology, 1989, 3, 215-220.	1.2	26
110	Decreasing functional responses as a result of adaptive consumer behavior. Evolutionary Ecology, 1989, 3, 95-114.	1.2	41
111	The evolution of rates of successful and unsuccessful predation. Evolutionary Ecology, 1989, 3, 157-171.	1.2	16
112	Population dynamics of systems with consumers that maintain a constant ratio of intake rates of two resources. Theoretical Population Biology, 1989, 35, 51-89.	1.1	29
113	How should resources be counted?. Theoretical Population Biology, 1988, 33, 226-242.	1.1	39
114	Resource Productivity-Consumer Species Diversity: Simple Models of Competition in Spatially Heterogeneous Environments. Ecology, 1988, 69, 1418-1433.	3.2	63
115	Alternative Models of Character Displacement and Niche Shift. 2. Displacement when There is Competition for a Single Resource. American Naturalist, 1987, 130, 271-282.	2.1	62
116	The nonlinearity of competitive effects in models of competition for essential resources. Theoretical Population Biology, 1987, 32, 50-65.	1.1	24
117	The functional responses of adaptive consumers of two resources. Theoretical Population Biology, 1987, 32, 262-288.	1.1	86
118	On classifying interactions between populations. Oecologia, 1987, 73, 272-281.	2.0	156
119	An analysis of competitive interactions between 3 hermit crab species. Oecologia, 1987, 72, 233-247.	2.0	49
120	Resource partitioning and competition for shells between intertidal hermit crabs on the outer coast of Washington. Oecologia, 1987, 72, 248-258.	2.0	29
121	Character displacement and niche shift analyzed using consumer-resource models of competition. Theoretical Population Biology, 1986, 29, 107-160.	1.1	166
122	The competitive exclusion principle: Other views and a reply. Trends in Ecology and Evolution, 1986, 1, 131-132.	8.7	15
123	Is predator-prey coevolutlon an arms race?. Trends in Ecology and Evolution, 1986, 1, 108-110.	8.7	30
124	Resource partitioning and competition for shells in a subtidal hermit crab species assemblage. Oecologia, 1986, 69, 429-445.	2.0	24
125	Variability in resource consumption rates and the coexistence of competing species. Theoretical Population Biology, 1984, 25, 106-124.	1.1	106
126	Recruitment, Lotteries, and Coexistence in Coral Reef Fish. American Naturalist, 1984, 123, 44-55.	2.1	25

127 Foraging Time Optimization and Interactions in Food Webs. American Naturalist, 1984, 124, 80-96. 2.1

128 Life-history strategies of optimal foragers. Theoretical Population Biology, 1983, 24, 22-38.
1.1

23
The Theory of Limiting Similarity. Annual Review of Ecology, Evolution, and Systematics, 1983, 14,
$329-376$.

130 Arguments in Favor of Higher Order Interactions. American Naturalist, 1983, 121, 887-891.
2.1

110

131	Food Webs. Population and Community Biology. Stuart L. Pimm. Quarterly Review of Biology, 1983, 58, 590-591.	0.1	0
132	Reply to a Comment by Hurlbert. Ecology, 1982, 63, 253-254.	3.2	5
133	Functional Responses of Optimal Foragers. American Naturalist, 1982, 120, 382-390.	2.1	268
134	Frequencies of interspecific shell exchanges between hermit crabs. Journal of Experimental Marine Biology and Ecology, 1982, 61, 99-109.	1.5	17
135	Intraspecific shell exchange in the hermit crab Clibanarius virescens (Krauss). Journal of Experimental Marine Biology and Ecology, 1982, 59, 89-101.	1.5	23

136 Complexity, Stability, and Functional Response. American Naturalist, 1982, 119, 240-249.

2.1
137 Comparing Randomly Constructed and Real Communities: A Comment. American Naturalist, 1981, 118,
776-782.
$2.1 \quad 8$
138 Shell fighting and competition between two hermit crab species in Panama. Oecologia, 1981, 51, 84-90. 2.0 17
139 Alternative methods of measuring competition applied to two Australian hermit crabs. Oecologia, 2.0 15
140 Competition in an Indo-Pacific hermit crab community. Oecologia, 1981, 51, 240-249.2.016Are Competition Coefficients Constant? Inductive Versus Deductive Approaches. American Naturalist,2.164
141 1980, 116, 730-735.142 Some Comments on Measuring Niche Overlap. Ecology, 1980, 61, 44-49.3.2

[^0]: Source: https:/|exaly.com/author-pdf/3270934/publications.pdf
 Version: 2024-02-01

