Peter A Abrams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3270934/publications.pdf

Version: 2024-02-01

22153 13,357 147 59 citations h-index papers

g-index 150 150 150 9045 docs citations times ranked citing authors all docs

23533

111

#	Article	IF	CITATIONS
1	The nature of predation: prey dependent, ratio dependent or neither?. Trends in Ecology and Evolution, 2000, 15, 337-341.	8.7	620
2	The interaction between predation and competition: a review and synthesis. Ecology Letters, 2002, 5, 302-315.	6.4	596
3	The Theory of Limiting Similarity. Annual Review of Ecology, Evolution, and Systematics, 1983, 14, 359-376.	6.7	457
4	Eco-evolutionary dynamics of communities and ecosystems. Functional Ecology, 2007, 21, 465-477.	3.6	450
5	Implications of Dynamically Variable Traits for Identifying, Classifying, and Measuring Direct and Indirect Effects in Ecological Communities. American Naturalist, 1995, 146, 112-134.	2.1	433
6	REVISITING THE CLASSICS: CONSIDERING NONCONSUMPTIVE EFFECTS IN TEXTBOOK EXAMPLES OF PREDATOR–PREY INTERACTIONS. Ecology, 2008, 89, 2416-2425.	3.2	401
7	The Effect of Flexible Growth Rates on Optimal Sizes and Development Times in a Seasonal Environment. American Naturalist, 1996, 147, 381-395.	2.1	384
8	Monotonic or Unimodal Diversity-Productivity Gradients: What Does Competition Theory Predict?. Ecology, 1995, 76, 2019-2027.	3.2	371
9	Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits. Evolutionary Ecology, 1993, 7, 465-487.	1.2	343
10	Foraging Time Optimization and Interactions in Food Webs. American Naturalist, 1984, 124, 80-96.	2.1	297
11	Interpreting the von Bertalanffy model of somatic growth in fishes: the cost of reproduction. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1625-1631.	2.6	287
12	Disruptive selection and then what?. Trends in Ecology and Evolution, 2006, 21, 238-245.	8.7	269
13	Functional Responses of Optimal Foragers. American Naturalist, 1982, 120, 382-390.	2.1	268
14	Positive Indirect Effects Between Prey Species that Share Predators. Ecology, 1996, 77, 610-616.	3.2	247
15	Some Comments on Measuring Niche Overlap. Ecology, 1980, 61, 44-49.	3.2	241
16	When does greater mortality increase population size? The long history and diverse mechanisms underlying the hydra effect. Ecology Letters, 2009, 12, 462-474.	6.4	228
17	Effect of Increased Productivity on the Abundances of Trophic Levels. American Naturalist, 1993, 141, 351-371.	2.1	219
18	Modelling the adaptive dynamics of traits involved in inter- and intraspecific interactions: An assessment of three methods. Ecology Letters, 2001, 4, 166-175.	6.4	209

#	Article	IF	CITATIONS
19	Life History and the Relationship Between Food Availability and Foraging Effort. Ecology, 1991, 72, 1242-1252.	3.2	203
20	The Fallacies of "Ratio-Dependent" Predation. Ecology, 1994, 75, 1842-1850.	3.2	192
21	Invulnerable Prey and the Paradox of Enrichment. Ecology, 1996, 77, 1125-1133.	3.2	191
22	Predators that Benefit Prey and Prey that Harm Predators: Unusual Effects of Interacting Foraging Adaptation. American Naturalist, 1992, 140, 573-600.	2.1	185
23	APPARENT COMPETITION OR APPARENT MUTUALISM? SHARED PREDATION WHEN POPULATIONS CYCLE. Ecology, 1998, 79, 201-212.	3.2	176
24	Landscape scale, heterogeneity, and the viability of Serengeti grazers. Ecology Letters, 2005, 8, 328-335.	6.4	172
25	Character displacement and niche shift analyzed using consumer-resource models of competition. Theoretical Population Biology, 1986, 29, 107-160.	1.1	166
26	On classifying interactions between populations. Oecologia, 1987, 73, 272-281.	2.0	156
27	Limiting similarity and the form of the competition coefficient. Theoretical Population Biology, 1975, 8, 356-375.	1.1	133
28	The Effects of Enrichment of Three-Species Food Chains with Nonlinear Functional Responses. Ecology, 1994, 75, 1118-1130.	3.2	129
29	Possible indirect interactions between transient and resident killer whales: implications for the evolution of foraging specializations in the genus Orcinus. Oecologia, 1992, 89, 125-132.	2.0	128
30	Why Predation Rate Should Not be Proportional to Predator Density. Ecology, 1993, 74, 726-733.	3.2	125
31	The Effects of Adaptive Behavior on the Type-2 Functional Response. Ecology, 1990, 71, 877-885.	3.2	124
32	Biphasic growth in fish I: Theoretical foundations. Journal of Theoretical Biology, 2008, 254, 197-206.	1.7	123
33	The Adaptive Dynamics of Consumer Choice. American Naturalist, 1999, 153, 83-97.	2.1	119
34	Arguments in Favor of Higher Order Interactions. American Naturalist, 1983, 121, 887-891.	2.1	110
35	The responses of unstable food chains to enrichment. Evolutionary Ecology, 1994, 8, 150-171.	1.2	107
36	Variability in resource consumption rates and the coexistence of competing species. Theoretical Population Biology, 1984, 25, 106-124.	1.1	106

#	Article	IF	Citations
37	Describing and quantifying interspecific interactions: a commentary on recent approaches. Oikos, 2001, 94, 209-218.	2.7	106
38	The Impact of Consumer–Resource Cycles on the Coexistence of Competing Consumers. Theoretical Population Biology, 2002, 62, 281-295.	1.1	101
39	Effects of adaptive predatory and anti-predator behaviour in a two-prey?one-predator system. Evolutionary Ecology, 1993, 7, 312-326.	1.2	99
40	Fitness minimization and dynamic instability as a consequence of predator–prey coevolution. Evolutionary Ecology, 1997, 11, 1-20.	1.2	98
41	Timid Consumers: Self-Extinction Due to Adaptive Change in Foraging and Anti-predator Effort. Theoretical Population Biology, 1994, 45, 76-91.	1.1	89
42	Consequences of behavioral dynamics for the population dynamics of predator-prey systems with switching. Population Ecology, 2004, 46, 13.	1.2	87
43	The functional responses of adaptive consumers of two resources. Theoretical Population Biology, 1987, 32, 262-288.	1.1	86
44	Adaptive foraging by predators as a cause of predator-prey cycles. Evolutionary Ecology, 1992, 6, 56-72.	1.2	84
45	IS PREDATOR-MEDIATED COEXISTENCE POSSIBLE INUNSTABLE SYSTEMS?. Ecology, 1999, 80, 608-621.	3.2	83
46	Effects of predator-specific defence on biodiversity and community complexity in two-trophic-level communities. Evolutionary Ecology, 1996, 10, 13-28.	1.2	81
47	DEFINING AND MEASURING THE IMPACT OF DYNAMIC TRAITS ON INTERSPECIFIC INTERACTIONS. Ecology, 2007, 88, 2555-2562.	3.2	80
48	High Competition with Low Similarity and Low Competition with High Similarity: Exploitative and Apparent Competition in Consumerâ€Resource Systems. American Naturalist, 1998, 152, 114-128.	2.1	79
49	The fitness costs of senescence: The evolutionary importance of events in early adult life. Evolutionary Ecology, 1991, 5, 343-360.	1.2	78
50	The effect of adaptive change in the prey on the dynamics of an exploited predator population. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 758-766.	1.4	78
51	Lazy males? Bioenergetic differences in energy acquisition and metabolism help to explain sexual size dimorphism in percids. Journal of Animal Ecology, 2008, 77, 916-926.	2.8	71
52	Should Prey Overestimate the Risk of Predation?. American Naturalist, 1994, 144, 317-328.	2.1	67
53	Biphasic growth in fish II: Empirical assessment. Journal of Theoretical Biology, 2008, 254, 207-214.	1.7	67
54	Optimal life histories and food web position: linkages among somatic growth, reproductive investment, and mortality. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 738-746.	1.4	65

#	Article	IF	Citations
55	Are Competition Coefficients Constant? Inductive Versus Deductive Approaches. American Naturalist, 1980, 116, 730-735.	2.1	64
56	Density-Independent Mortality and Interspecific Competition: A Test of Pianka's Niche Overlap Hypothesis. American Naturalist, 1977, 111, 539-552.	2.1	64
57	Resource Productivity-Consumer Species Diversity: Simple Models of Competition in Spatially Heterogeneous Environments. Ecology, 1988, 69, 1418-1433.	3.2	63
58	Coexistence of competitors in metacommunities due to spatial variation in resource growth rates; does R * predict the outcome of competition?. Ecology Letters, 2004, 7, 929-940.	6.4	63
59	Alternative Models of Character Displacement and Niche Shift. 2. Displacement when There is Competition for a Single Resource. American Naturalist, 1987, 130, 271-282.	2.1	62
60	The impact of mortality on predator population size and stability in systems with stage-structured prey. Theoretical Population Biology, 2005, 68, 253-266.	1.1	62
61	Shell selection and utilization in a terrestrial hermit crab, Coenobita compressus (H. Milne Edwards). Oecologia, 1978, 34, 239-253.	2.0	61
62	Strengths of Indirect Effects Generated by Optimal Foraging. Oikos, 1991, 62, 167.	2.7	60
63	Evolution and the Consequences of Species Introductions and Deletions. Ecology, 1996, 77, 1321-1328.	3.2	59
64	Consumer functional response and competition in consumer-resource systems. Theoretical Population Biology, 1980, 17, 80-102.	1.1	55
65	Effects of predator-specific defence on community complexity. Evolutionary Ecology, 1994, 8, 628-638.	1.2	55
66	Dynamics and responses to mortality rates of competing predators undergoing predator–prey cycles. Theoretical Population Biology, 2003, 64, 163-176.	1.1	51
67	Ecological vs Evolutionary Consequences of Competition. Oikos, 1990, 57, 147.	2.7	50
68	â€~Adaptive Dynamics' vs. â€~adaptive dynamics'. Journal of Evolutionary Biology, 2005, 18, 1162-1165.	1.7	50
69	An analysis of competitive interactions between 3 hermit crab species. Oecologia, 1987, 72, 233-247.	2.0	49
70	Anomalous Predictions of Ratio-Dependent Models of Predation. Oikos, 1997, 80, 163.	2.7	49
71	THE IMPACT OF HABITAT SELECTION ON THE SPATIAL HETEROGENEITY OF RESOURCES IN VARYING ENVIRONMENTS. Ecology, 2000, 81, 2902-2913.	3.2	48
72	Effects of predator–prey interactions and adaptive change on sustainable yield. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 175-184.	1.4	48

#	Article	lF	CITATIONS
73	Optimal traits when there are several costs: the interaction of mortality and energy costs in determining foraging behavior. Behavioral Ecology, 1993, 4, 246-259.	2.2	47
74	Why ratio dependence is (still) a bad model of predation. Biological Reviews, 2015, 90, 794-814.	10.4	47
75	The evolution of traits that determine ability in competitive contests. Evolutionary Ecology, 1994, 8, 667-686.	1.2	46
76	Fitness minimization and dynamic instability as a consequence of predator-prey coevolution. Evolutionary Ecology, 1996, 10, 167-186.	1.2	46
77	Switching behavior, coexistence and diversification: comparing empirical communityâ€wide evidence with theoretical predictions. Ecology Letters, 2008, 11, 802-808.	6.4	45
78	MEASURING THE IMPACT OF DYNAMIC ANTIPREDATOR TRAITS ON PREDATOR–PREY–RESOURCE INTERACTIONS. Ecology, 2008, 89, 1640-1649.	3.2	45
79	Modifying modifiers: what happens when interspecific interactions interact?. Journal of Animal Ecology, 2011, 80, 1097-1108.	2.8	45
80	Hydra effects in stable communities and their implications for system dynamics. Ecology, 2016, 97, 1135-1145.	3.2	44
81	Decreasing functional responses as a result of adaptive consumer behavior. Evolutionary Ecology, 1989, 3, 95-114.	1.2	41
82	Should co-operative groups be more vigilant than selfish groups?. Journal of Theoretical Biology, 1990, 142, 341-357.	1.7	41
83	Dynamic versus Instantaneous Models of Diet Choice. American Naturalist, 2003, 162, 668-684.	2.1	41
84	How should resources be counted?. Theoretical Population Biology, 1988, 33, 226-242.	1.1	39
85	Why don't predators have positive effects on prey populations?. Evolutionary Ecology, 1992, 6, 449-457.	1.2	39
86	Adaptive Host Preference and the Dynamics of Host–Parasitoid Interactions. Theoretical Population Biology, 1999, 56, 307-324.	1.1	37
87	Competitionâ€Similarity Relationships and the Nonlinearity of Competitive Effects in Consumerâ€Resource Systems. American Naturalist, 2008, 172, 463-474.	2.1	37
88	Coexistence and limiting similarity of consumer species competing for a linear array of resources. Ecology, 2009, 90, 812-822.	3.2	37
89	Prey persistence and abundance in systems with intraguild predation and type-2 functional responses. Journal of Theoretical Biology, 2010, 264, 1033-1042.	1.7	37
90	Antarctic fisheries: factor climate change into their management. Nature, 2018, 558, 177-180.	27.8	36

#	Article	IF	Citations
91	WHEN DOES PERIODIC VARIATION IN RESOURCE GROWTH ALLOW ROBUST COEXISTENCE OF COMPETING CONSUMER SPECIES?. Ecology, 2004, 85, 372-382.	3.2	35
92	Indirect effects of zebra mussels (Dreissena polymorpha) on the planktonic food web. Canadian Journal of Fisheries and Aquatic Sciences, 2003, 60, 1353-1368.	1.4	33
93	DETERMINANTS OF THE STRENGTH OF DISRUPTIVE AND/OR DIVERGENT SELECTION ARISING FROM RESOURCE COMPETITION. Evolution; International Journal of Organic Evolution, 2008, 62, 1571-1586.	2.3	32
94	Is predator-prey coevolution an arms race?. Trends in Ecology and Evolution, 1986, 1, 108-110.	8.7	30
95	The Predictive Ability of Peer Review of Grant Proposals: The Case of Ecology and the US National Science Foundation. Social Studies of Science, 1991, 21, 111-132.	2.5	30
96	Resource partitioning and competition for shells between intertidal hermit crabs on the outer coast of Washington. Oecologia, 1987, 72, 248-258.	2.0	29
97	Population dynamics of systems with consumers that maintain a constant ratio of intake rates of two resources. Theoretical Population Biology, 1989, 35, 51-89.	1.1	29
98	Mixed responses to resource densities and their implications for character displacement. Evolutionary Ecology, 1990, 4, 93-102.	1.2	29
99	Adaptive responses of generalist herbivores to competition: Convergence or divergence. Evolutionary Ecology, 1990, 4, 103-114.	1.2	29
100	A multi-scale comparison of trait linkages to environmental and spatial variables in fish communities across a large freshwater lake. Oecologia, 2011, 166, 819-831.	2.0	28
101	The importance of intraspecific frequency-dependent selection in modelling competitive coevolution. Evolutionary Ecology, 1989, 3, 215-220.	1.2	26
102	The effects of interacting species on predator-prey coevolution. Theoretical Population Biology, 1991, 39, 241-262.	1.1	26
103	Population dynamical consequences of reduced predator switching at low total prey densities. Population Ecology, 2003, 45, 175-185.	1.2	26
104	Quantitative descriptions of resource choice in ecological models. Population Ecology, 2010, 52, 47-58.	1.2	26
105	How does adaptive consumer movement affect population dynamics in consumer–resource metacommunities with homogeneous patches?. Journal of Theoretical Biology, 2011, 277, 99-110.	1.7	26
106	Harvesting creates ecological traps: consequences of invisible mortality risks in predator–prey metacommunities. Ecology, 2012, 93, 281-293.	3.2	26
107	Niche overlap and environmental variability. Mathematical Biosciences, 1976, 28, 357-372.	1.9	25
108	Recruitment, Lotteries, and Coexistence in Coral Reef Fish. American Naturalist, 1984, 123, 44-55.	2.1	25

#	Article	IF	Citations
109	Resource partitioning and competition for shells in a subtidal hermit crab species assemblage. Oecologia, 1986, 69, 429-445.	2.0	24
110	The nonlinearity of competitive effects in models of competition for essential resources. Theoretical Population Biology, 1987, 32, 50-65.	1.1	24
111	Mortality and lifespan. Nature, 2004, 431, 1048-1048.	27.8	24
112	Adaptive changes in prey vulnerability shape the response of predator populations to mortality. Journal of Theoretical Biology, 2009, 261, 294-304.	1.7	24
113	Intraspecific shell exchange in the hermit crab Clibanarius virescens (Krauss). Journal of Experimental Marine Biology and Ecology, 1982, 59, 89-101.	1.5	23
114	Life-history strategies of optimal foragers. Theoretical Population Biology, 1983, 24, 22-38.	1.1	23
115	The many potential indirect interactions between predators that share competing prey. Ecological Monographs, 2015, 85, 625-641.	5.4	23
116	TRAIT-INITIATED INDIRECT EFFECTS DUE TO CHANGES IN CONSUMPTION RATES IN SIMPLE FOOD WEBS. Ecology, 2004, 85, 1029-1038.	3.2	22
117	Simple Life-History Omnivory: Responses to Enrichment and Harvesting in Systems with Intraguild Predation. American Naturalist, 2011, 178, 305-319.	2.1	22
118	Limits to the Similarity of Competitors Under Hierarchical Lottery Competition. American Naturalist, 1996, 148, 211-219.	2.1	21
119	Does Competition between Resources Change the Competition between Their Consumers to Mutualism? Variations on Two Themes by Vandermeer. American Naturalist, 2007, 170, 744-757.	2.1	20
120	Necessary elements of precautionary management: implications for the Antarctic toothfish. Fish and Fisheries, 2016, 17, 1152-1174.	5.3	20
121	The prevalence of asymmetrical indirect effects in two-host–one-parasitoid systems. Theoretical Population Biology, 2004, 66, 71-82.	1.1	19
122	How precautionary is the policy governing the Ross Sea Antarctic toothfish (<i>Dissostichus) Tj ETQq0 0 0 rgBT /</i>	Oyerlock	10 ₁ 7f 50 222
123	Complexity, Stability, and Functional Response. American Naturalist, 1982, 119, 240-249.	2.1	19
124	The interaction between reproductive lifespan and protandry in seasonal breeders. Journal of Evolutionary Biology, 2004, 17, 768-778.	1.7	18
125	Shell fighting and competition between two hermit crab species in Panama. Oecologia, 1981, 51, 84-90.	2.0	17
126	Frequencies of interspecific shell exchanges between hermit crabs. Journal of Experimental Marine Biology and Ecology, 1982, 61, 99-109.	1.5	17

#	Article	IF	Citations
127	Evolutionary responses of foraging-related traits in unstable predator–prey systems. Evolutionary Ecology, 1997, 11, 673-686.	1.2	17
128	Competition in an Indo-Pacific hermit crab community. Oecologia, 1981, 51, 240-249.	2.0	16
129	The evolution of rates of successful and unsuccessful predation. Evolutionary Ecology, 1989, 3, 157-171.	1.2	16
130	Is feedback control effective for ecosystem-based fisheries management?. Journal of Theoretical Biology, 2013, 339, 122-128.	1.7	16
131	Alternative methods of measuring competition applied to two Australian hermit crabs. Oecologia, 1981, 51, 233-239.	2.0	15
132	The competitive exclusion principle: Other views and a reply. Trends in Ecology and Evolution, 1986, 1, 131-132.	8.7	15
133	The roles of spatial heterogeneity and adaptive movement in stabilizing (or destabilizing) simple metacommunities. Journal of Theoretical Biology, 2011, 291, 76-87.	1.7	15
134	Effects of altered resource consumption rates by one consumer species on a competitor. Ecology Letters, 2003, 6, 550-555.	6.4	13
135	Variability and Adaptive Behavior: Implications for Interactions between Stream Organisms. Journal of the North American Benthological Society, 1997, 16, 358-374.	3.1	12
136	Prey lifeâ€history and bioenergetic responses across a predation gradient. Journal of Fish Biology, 2010, 77, 1230-1251.	1.6	12
137	Further evidence that Antarctic toothfish are important to Weddell seals. Antarctic Science, 2021, 33, 17-29.	0.9	12
138	Evolutionarily Stable Growth Rates in Size-Structured Populations Under Size-Related Competition. Theoretical Population Biology, 1994, 46, 78-95.	1.1	11
139	Comparing Randomly Constructed and Real Communities: A Comment. American Naturalist, 1981, 118, 776-782.	2.1	8
140	Does consumption rate scale superlinearly?. Nature, 2013, 493, E1-E2.	27.8	6
141	The evolutionary and behavioral modification of consumer responses to environmental change. Journal of Theoretical Biology, 2014, 343, 162-173.	1.7	6
142	Overestimation Versus Underestimation of Predation Risk: A Reply to Bouskila et al American Naturalist, 1995, 145, 1020-1024.	2.1	6
143	Reply to a Comment by Hurlbert. Ecology, 1982, 63, 253-254.	3.2	5
144	Introducing the symposium "Building on Beverton's legacy: life history variation and fisheries management". Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 725-729.	1.4	5

#	Article	IF	CITATIONS
145	Ideal gas model adequately describes movement and school formation in a pelagic freshwater fish. Behavioral Ecology, 2015, 26, 1236-1247.	2.2	4
146	Paradoxical effects and interactions in food webs: a commentary on Nilsson and McCann (2016). Theoretical Ecology, 2016, 9, 513-517.	1.0	0
147	Food Webs. Population and Community Biology. Stuart L. Pimm. Quarterly Review of Biology, 1983, 58, 590-591.	0.1	0