Haiqing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3270590/publications.pdf Version: 2024-02-01

HALOING

#	Article	IF	CITATIONS
1	Assemblable Carbon Fiber/Metal–Organic Framework Monoliths for Energy-Efficient Atmospheric Water Harvesting. Industrial & Engineering Chemistry Research, 2022, 61, 1344-1354.	3.7	23
2	Sandwich-Structured Carbon Paper/Metal–Organic Framework Monoliths for Flexible Solar-Powered Atmospheric Water Harvesting On Demand. ACS Applied Materials & Interfaces, 2022, 14, 10966-10975.	8.0	24
3	Embedding metal foam into metal–organic framework monoliths for triggering a highly efficient release of adsorbed atmospheric water by localized eddy current heating. Materials Horizons, 2021, 8, 1439-1445.	12.2	39
4	Metal Microfibers Delivered Eddy Current Heating for Efficient Synthesis and Regeneration of Metal–Organic Framework Monoliths. Inorganic Chemistry, 2021, 60, 11251-11258.	4.0	3
5	Enabling Continuous and Improved Solar-Driven Atmospheric Water Harvesting with Ti ₃ C ₂ -Incorporated Metal–Organic Framework Monoliths. ACS Applied Materials & Interfaces, 2021, 13, 38906-38915.	8.0	46
6	Localized heating driven selective growth of metal-organic frameworks (MOFs) in wood: A novel synthetic strategy for significantly enhancing MOF loadings in wood. Applied Surface Science, 2021, 564, 150325.	6.1	16
7	Localized Electrical Induction Heating for Highly Efficient Synthesis and Regeneration of Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 4097-4104.	8.0	13
8	Magnetic Metal–Organic Framework Composites: Solvent-Free Synthesis and Regeneration Driven by Localized Magnetic Induction Heat. ACS Sustainable Chemistry and Engineering, 2019, 7, 13627-13632.	6.7	29
9	Low-Energy CO ₂ Release from Metal–Organic Frameworks Triggered by External Stimuli. Accounts of Chemical Research, 2017, 50, 778-786.	15.6	104
10	Magnetic Induction Framework Synthesis: A General Route to the Controlled Growth of Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 6186-6190.	6.7	34
11	A Robust Metal–Organic Framework for Dynamic Lightâ€Induced Swing Adsorption of Carbon Dioxide. Chemistry - A European Journal, 2016, 22, 11176-11179.	3.3	55
12	Magnetic Metal–Organic Frameworks for Efficient Carbon Dioxide Capture and Remote Trigger Release. Advanced Materials, 2016, 28, 1839-1844.	21.0	107
13	Facile stabilization of cyclodextrin metal–organic frameworks under aqueous conditions via the incorporation of C ₆₀ in their matrices. Chemical Communications, 2016, 52, 5973-5976.	4.1	81
14	Magnetic Induction Swing Adsorption: An Energy Efficient Route to Porous Adsorbent Regeneration. Chemistry of Materials, 2016, 28, 6219-6226.	6.7	59
15	MaLISA – a cooperative method to release adsorbed gases from metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 18757-18762.	10.3	46
16	Visible Light Triggered CO ₂ Liberation from Silver Nanocrystals Incorporated Metal–Organic Frameworks. Advanced Functional Materials, 2016, 26, 4815-4821.	14.9	53
17	Modulation of Stem Cell Adhesion and Morphology via Facile Control over Surface Presentation of Cell Adhesion Molecules. Biomacromolecules, 2014, 15, 43-52.	5.4	48
18	Changing ligand number and type within nanocylindrical domains through kinetically constrained self-assembly – impacts of ligand â€~redundancy' on human mesenchymal stem cell adhesion and morphology. Biomaterials Science, 2014, 2, 1693-1705.	5.4	15

Haiqing Li

#	Article	IF	CITATIONS
19	Controlled accommodation of metal nanostructures within the matrices of polymer architectures through solution-based synthetic strategies. Progress in Polymer Science, 2014, 39, 1878-1907.	24.7	25
20	Hyperbranched polymer mediated fabrication of water soluble carbon nanotube–metal nanoparticle hybrids. Nanoscale, 2013, 5, 2915.	5.6	30
21	Facile and controllable incorporation of gold nanoparticles within one-dimensional self-assemblies of hyperbranched polymers. Soft Matter, 2013, 9, 5270.	2.7	10
22	Palladium nanoparticles decorated carbon nanotubes: facile synthesis and their applications as highly efficient catalysts for the reduction of 4-nitrophenol. Green Chemistry, 2012, 14, 586.	9.0	147
23	A general and efficient method for decorating graphene sheets with metal nanoparticles based on the non-covalently functionalized graphene sheets with hyperbranched polymers. Nanoscale, 2012, 4, 1355.	5.6	39