Xinjian Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3270410/publications.pdf

Version: 2024-02-01

759233 713466 24 468 12 21 citations h-index g-index papers 24 24 24 341 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Microstructure and mechanical properties of resistance-spot-welded joints for A5052 aluminum alloy and DP 600 steel. Materials Characterization, 2016, 120, 45-52.	4.4	65
2	Microstructure and XRD analysis of brazing joint for duplex stainless steel using a Ni–Si–B filler metal. Materials Characterization, 2009, 60, 923-931.	4.4	58
3	Improvement of resistance-spot-welded joints for DP 600 steel and A5052 aluminum alloy with Zn slice interlayer. Journal of Manufacturing Processes, 2017, 30, 396-405.	5.9	49
4	Effect of high energy shot peening on the microstructure and mechanical properties of Mg/Ti joints. Journal of Alloys and Compounds, 2017, 695, 1383-1391.	5 . 5	42
5	Characterization of transient-liquid-phase-bonded joints in a duplex stainless steel with a Ni–Cr–B insert alloy. Materials Characterization, 2009, 60, 1289-1297.	4.4	35
6	Microstructural Evolution and Bonding Behavior during Transient Liquid-Phase Bonding of a Duplex Stainless Steel using two Different Ni-B-Based Filler Materials. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 1310-1324.	2.2	32
7	Effect of ultrasonic vibration on TIG welding–brazing joining of aluminum alloy to steel. Journal of Materials Processing Technology, 2019, 266, 230-238.	6.3	28
8	Microstructures, Mechanical and Chemical Properties of TLP-Bonded Joints in a Duplex Stainless Steel with Amorphous Ni-Based Insert Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1989-2001.	2.2	25
9	Effect of axial magnetic field on TIG welding–brazing of AA6061 aluminum alloy to HSLA350 steel. Journal of Materials Research and Technology, 2021, 12, 882-893.	5.8	23
10	Effect of high energy shot-peening on the microstructure and mechanical properties of Al5052/Ti6Al4V lap joints. Journal of Materials Processing Technology, 2018, 255, 76-85.	6.3	22
11	Microstructure, mechanical properties and failure mechanisms of resistance spot welding joints between ultra high strength steel 22MnB5 and galvanized steel HSLA350. International Journal of Precision Engineering and Manufacturing, 2016, 17, 1659-1664.	2.2	17
12	Solder Characteristics of a Rapidly Solidified Sn-9Zn-0.1Cr Alloy and Mechanical Properties of Cu/Solder/Cu Joints. Journal of Electronic Materials, 2012, 41, 2100-2106.	2.2	13
13	Microstructure and mechanical properties of high-energy shot-peened Mg/Ti weldments. Science and Technology of Welding and Joining, 2018, 23, 28-34.	3.1	12
14	Microstructural characteristics in vacuum TLP (Transient Liquid Phase) bonds using a novel iron-based interlayer based on duplex stainless steel base metal alloyed with a melting-point depressant. Vacuum, 2014, 99, 12-16.	3.5	9
15	Nugget formation and its mechanism of resistance spot welded joints in DP600 dual-phase and DC54D ultralow carbon steel. Metals and Materials International, 2017, 23, 543-553.	3.4	7
16	Dissimilar Resistance Spot Welding of DP 600/A5052/DP 600 Triple Sheets. International Journal of Precision Engineering and Manufacturing, 2018, 19, 1673-1679.	2.2	7
17	Microstructure and Mechanical Characteristics of Dissimilar TIG Welded 9% Cr Heat-Resistant Steels Joints. International Journal of Precision Engineering and Manufacturing, 2021, 22, 1007-1019.	2.2	7
18	Improvement of Al/Steel Tungsten Inert Gas Welding–Brazing Joint by High-Energy Shot Peening. Journal of Materials Engineering and Performance, 2019, 28, 2937-2945.	2.5	5

#	Article	lF	CITATION
19	Microstructure and mechanical property of brazed joints in titanium alloy and aluminum alloy combination with tin foil interlayer. International Journal of Precision Engineering and Manufacturing, 2015, 16, 1293-1297.	2.2	4
20	The study of microstructure, corrosion resistance and mechanical properties of ultrasonic assisted welding-brazing of Ti–Mg. Journal of Materials Research and Technology, 2022, 17, 467-477.	5.8	4
21	Effect of High Energy Shot Peening on the Microstructure and Mechanical Property of AZ31B Mg Alloy/HSLA350 Steel Lap Joints. International Journal of Precision Engineering and Manufacturing, 2021, 22, 831-841.	2.2	2
22	Improvement in Weldment of Dissimilar 9% CR Heat-Resistant Steels by Post-Weld Heat Treatment. Metals, 2020, 10, 1321.	2.3	1
23	Formation Mechanisms for (Cr,Co)7C3/(Cr,Co)23C6 Heterogeneous Precipitates and Stacking Faults Around Carbides in Surfacing Welding of Stellite Alloy on Stainless Steel. Metals and Materials International, 2022, 28, 1639-1649.	3.4	1
24	Application direction of amorphous and nanocrystalline alloy materials and the evaluation of venture capital value. Ferroelectrics, 2021, 581, 17-31.	0.6	0