Pamela Cowin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3270341/publications.pdf

Version: 2024-02-01

47 4,121 25
papers citations h-index

42 g-index

49 49 all docs docs citations

49 times ranked 3546 citing authors

#	Article	IF	CITATIONS
1	Plakoglobin: A protein common to different kinds of intercellular adhering junctions. Cell, 1986, 46, 1063-1073.	13.5	753
2	Plakoglobin Suppresses Epithelial Proliferation and Hair Growth in Vivo. Journal of Cell Biology, 2000, 149, 503-520.	2.3	378
3	Cadherins and catenins in breast cancer. Current Opinion in Cell Biology, 2005, 17, 499-508.	2.6	307
4	Nomenclature of the desmosomal cadherins Journal of Cell Biology, 1993, 121, 481-483.	2.3	278
5	Untangling Desmosomal Knots with Electron Tomography. Science, 2003, 302, 109-113.	6.0	217
6	Molecular cloning and amino acid sequence of human plakoglobin, the common junctional plaque protein Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 4027-4031.	3.3	212
7	î"n89î²-Catenin Induces Precocious Development, Differentiation, and Neoplasia in Mammary Gland. Journal of Cell Biology, 2001, 153, 555-568.	2.3	207
8	The complement of desmosomal plaque proteins in different cell types Journal of Cell Biology, 1985, 101, 1442-1454.	2.3	195
9	Beta-catenin and Tcfs in mammary development and cancer. Journal of Mammary Gland Biology and Neoplasia, 2003, 8, 145-158.	1.0	180
10	Molecular Mechanisms Guiding Embryonic Mammary Gland Development. Cold Spring Harbor Perspectives in Biology, 2010, 2, a003251-a003251.	2.3	119
11	Desmoglein shows extensive homology to the cadherin family of cell adhesion molecules. Biochemical and Biophysical Research Communications, 1990, 173, 1224-1230.	1.0	117
12	Desmosomal Cadherin Binding Domains of Plakoglobin. Journal of Biological Chemistry, 1996, 271, 10904-10909.	1.6	116
13	Key signaling nodes in mammary gland development and cancer: \hat{l}^2 -catenin. Breast Cancer Research, 2010, 12, 213.	2.2	113
14	Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development (Cambridge), 2006, 133, 3661-3670.	1.2	94
15	Bone Morphogenetic Protein Signaling Regulates Postnatal Hair Follicle Differentiation and Cycling. American Journal of Pathology, 2004, 165, 729-740.	1.9	69
16	MMTV-Wnt1 and -ΔN89β-Catenin Induce Canonical Signaling in Distinct Progenitors and Differentially Activate Hedgehog Signaling within Mammary Tumors. PLoS ONE, 2009, 4, e4537.	1.1	63
17	Immunolocalization of plakoglobin in endothelial junctions: identification as a special type of Zonulae adhaerentes. Biology of the Cell, 1987, 59, 205-218.	0.7	63
18	A Systematic Screen for Micro-RNAs Regulating the Canonical Wnt Pathway. PLoS ONE, 2011, 6, e26257.	1.1	63

#	Article	IF	Citations
19	Biochemical characterization of the soluble form of the junctional plaque protein, plakoglobin, from different cell types. FEBS Journal, 1987, 166, 505-517.	0.2	60
20	Plakoglobin Is Required for Effective Intermediate Filament Anchorage to Desmosomes. Journal of Investigative Dermatology, 2008, 128, 2665-2675.	0.3	48
21	Dissecting the roles of \hat{A} -catenin and cyclin D1 during mammary development and neoplasia. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11400-11405.	3.3	47
22	Deconstructing desmoplakin. Nature Cell Biology, 2001, 3, E270-E272.	4.6	39
23	The Endothelial Junction. , 1988, , 147-166.		38
24	b-Catenin and Cyclin D1: Connecting Development to Breast Cancer. Cell Cycle, 2004, 3, 143-146.	1.3	36
25	Plakoglobin Is O-Glycosylated Close to the N-terminal Destruction Box. Journal of Biological Chemistry, 2003, 278, 37745-37752.	1.6	35
26	Breast Cancer Progression: Controversies and Consensus in the Molecular Mechanisms of Metastasis and EMT. Journal of Mammary Gland Biology and Neoplasia, 2007, 12, 99-102.	1.0	33
27	Maintenance of desmosomes in mouse hepatocytes after drug-induced rearrangement of cytokeratin filament material. Experimental Cell Research, 1985, 161, 161-171.	1.2	25
28	Embryonic mammary gland development. Seminars in Cell and Developmental Biology, 2021, 114, 83-92.	2.3	25
29	Molecular cloning of the mouse Ltbp-1 gene reveals tissue specific expression of alternatively spliced forms. Gene, 2003, 308, 31-41.	1.0	23
30	Beta-catenin and cyclin D1: connecting development to breast cancer. Cell Cycle, 2004, 3, 145-8.	1.3	22
31	Choreographing Metastasis to the Tune of LTBP. Journal of Mammary Gland Biology and Neoplasia, 2011, 16, 67-80.	1.0	19
32	The Desmosomal Plaque and the Cytoskeleton. Novartis Foundation Symposium, 1987, 125, 26-48.	1.2	19
33	Distinct function of androgen receptor coactivator ARA70Î \pm and ARA70Î 2 in mammary gland development, and in breast cancer. Breast Cancer Research and Treatment, 2011, 128, 391-400.	1.1	18
34	The pattern of \hat{l}^2 -catenin responsiveness within the mammary gland is regulated by progesterone receptor. Development (Cambridge), 2007, 134, 3703-3712.	1.2	17
35	Gli Activity Is Critical at Multiple Stages of Embryonic Mammary and Nipple Development. PLoS ONE, 2013, 8, e79845.	1.1	17
36	Appearance of Langerhans Cells in the Epidermis of Tgfb1 \hat{a} '/ \hat{a} ' SCID Mice: Paracrine and Autocrine Effects of Transforming Growth Factor- \hat{l} ² 1 and - \hat{l} ² 21. Journal of Investigative Dermatology, 2001, 117, 1574-1580.	0.3	16

#	Article	IF	CITATIONS
37	A mouse transgenic approach to induce \hat{l}^2 -catenin signaling in a temporally controlled manner. Transgenic Research, 2011, 20, 827-840.	1.3	9
38	Adhesion G-Protein-Coupled Receptors: Elusive Hybrids Come of Age. Cell Communication and Adhesion, 2013, 20, 213-225.	1.0	9
39	Gpr125 is a unifying hallmark of multiple mammary progenitors coupled to tumor latency. Nature Communications, 2022, 13, 1421.	5.8	9
40	Links between transforming growth factor- \hat{l}^2 and canonical Wnt signaling yield new insights into breast cancer susceptibility, suppression and tumor heterogeneity. Breast Cancer Research, 2009, 11, 103.	2.2	4
41	Ltbp1Lis focally induced in embryonic mammary mesenchyme, demarcates the ductal luminal lineage and is upregulated during involution. Breast Cancer Research, 2013, 15, R111.	2.2	4
42	General Themes in Cell–Cell Junctions and Cell Adhesion. , 2001, , .		2
43	Highlighting Young Investigators: Guest Editor Ramanuj DasGupta Ram DasGupta: Pushing the boundaries of \hat{l}^2 -catenin signaling and drug development. Cell Communication and Adhesion, 2013, 20, 151-153.	1.0	1
44	Desmosomal Cadherins and Their Interactions with Plakoglobin. Advances in Molecular and Cell Biology, 1996, 16, 113-136.	0.1	0
45	Highlights from Special Issue: Junctional Targets of Skin and Heart Diseases. Cell Communication and Adhesion, 2014, 21, 1-1.	1.0	O
46	Highlighting Kathleen Green and Mario Delmar, Guest Editors of Special Issue (part 2): Junctional Targets of Skin and Heart Disease. Cell Communication and Adhesion, 2014, 21, 101-102.	1.0	0
47	Bringing law and order to the cytoskeleton and cell junctions: An interview with Werner Franke. Cell Communication and Adhesion, 2014, 21, 103-107.	1.0	O