Erin S Kelleher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3270312/publications.pdf

Version: 2024-02-01

567281 610901 33 766 15 24 citations h-index g-index papers 41 41 41 747 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Protein–Protein Interactions Shape Genomic Autoimmunity in the Adaptively Evolving Rhino-Deadlock-Cutoff Complex. Genome Biology and Evolution, 2021, 13, .	2.5	2
2	Taming the Turmoil Within: New Insights on the Containment of Transposable Elements. Trends in Genetics, 2020, 36, 474-489.	6.7	29
3	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. PLoS Genetics, 2020, 16, e1008861.	3.5	12
4	Uninvited guests: how transposable elements take advantage of Drosophila germline stem cells, and how stem cells fight back. Current Opinion in Insect Science, 2020, 37, 49-56.	4.4	2
5	Rapid evolution of piRNA-mediated silencing of an invading transposable element was driven by abundant de novo mutations. Genome Research, 2020, 30, 566-575.	5.5	35
6	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. , 2020, 16, e1008861.		0
7	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. , 2020, 16, e1008861.		0
8	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity., 2020, 16, e1008861.		0
9	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. , 2020, 16, e1008861.		0
10	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. , 2020, 16 , e 1008861 .		0
11	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. , 2020, 16, e1008861.		0
12	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. , 2020, 16, e1008861.		0
13	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. , 2020, 16, e1008861.		0
14	p53 is required for female germline stem cell maintenance in P-element hybrid dysgenesis. Developmental Biology, 2018, 434, 215-220.	2.0	24
15	The Evolution of Small-RNA-Mediated Silencing of an Invading Transposable Element. Genome Biology and Evolution, 2018, 10, 3038-3057.	2.5	32
16	QTL mapping of natural variation reveals that the developmental regulator bruno reduces tolerance to P-element transposition in the Drosophila female germline. PLoS Biology, 2018, 16, e2006040.	5.6	20
17	Paternal Induction of Hybrid Dysgenesis in <i>Drosophila melanogaster</i> Is Weakly Correlated with Both <i>P</i> -Element and <i>hobo</i> Element Dosage. G3: Genes, Genomes, Genetics, 2017, 7, 1487-1497.	1.8	40
18	Retrotransposons: Stowaways in the Primordial Germline. Current Biology, 2017, 27, R1066-R1068.	3.9	4

#	Article	IF	CITATIONS
19	Targeted identification of TE insertions in a Drosophila genome through hemi-specific PCR. Mobile DNA, 2017, 8, 10.	3.6	7
20	Reexamining the <i>P</i> -Element Invasion of <i>Drosophila melanogaster</i> Through the Lens of piRNA Silencing. Genetics, 2016, 203, 1513-1531.	2.9	57
21	Analysis of piRNA-Mediated Silencing of Active TEs in Drosophila melanogaster Suggests Limits on the Evolution of Host Genome Defense. Molecular Biology and Evolution, 2013, 30, 1816-1829.	8.9	61
22	Drosophila Interspecific Hybrids Phenocopy piRNA-Pathway Mutants. PLoS Biology, 2012, 10, e1001428.	5.6	84
23	Postmating transcriptional changes in reproductive tracts of con- and heterospecifically mated <i>Drosophila mojavensis</i> females. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7878-7883.	7.1	61
24	Diversity-Enhancing Selection Acts on a Female Reproductive Protease Family in Four Subspecies of Drosophila mojavensis. Genetics, 2011, 187, 865-876.	2.9	14
25	Expanding islands of speciation. Nature, 2010, 465, 1019-1020.	27.8	4
26	Protease Gene Duplication and Proteolytic Activity in Drosophila Female Reproductive Tracts. Molecular Biology and Evolution, 2009, 26, 2125-2134.	8.9	37
27	Duplication, Selection and Gene Conversion in a <i>Drosophila mojavensis</i> Female Reproductive Protein Family. Genetics, 2009, 181, 1451-1465.	2.9	34
28	Proteomic analysis of Drosophila mojavensis male accessory glands suggests novel classes of seminal fluid proteins. Insect Biochemistry and Molecular Biology, 2009, 39, 366-371.	2.7	50
29	Gene Duplication and Adaptive Evolution of Digestive Proteases in Drosophila arizonae Female Reproductive Tracts. PLoS Genetics, 2007, 3, e148.	3.5	70
30	Reproductive Tract Interactions Contribute to Isolation in <i>Drosophila</i> . Fly, 2007, 1, 33-37.	1.7	27
31	Sperm fate and function in reproductive isolation in Drosophila. Society of Reproduction and Fertility Supplement, 2007, 65, 155-73.	0.2	3
32	Fitness effects of X chromosome drive in the stalk-eyed fly, Cyrtodiopsis dalmanni. Journal of Evolutionary Biology, 2006, 19, 1851-1860.	1.7	48
33	Gene Duplication and Adaptive Evolution of Digestive Proteases in Drosophila arizonae Female Reproductive Tracts. PLoS Genetics, 2005, preprint, e148.	3.5	0