Erich G Bornberg-Bauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3269985/publications.pdf Version: 2024-02-01

		36271	32815
142	11,475	51	100
papers	citations	h-index	g-index
230	230	230	14387
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant Journal, 2007, 50, 347-363.	2.8	1,322
2	Functional and Evolutionary Insights from the Genomes of Three Parasitoid <i>Nasonia</i> Species. Science, 2010, 327, 343-348.	6.0	808
3	The genome of Eucalyptus grandis. Nature, 2014, 510, 356-362.	13.7	725
4	The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 2016, 530, 331-335.	13.7	460
5	Molecular traces of alternative social organization in a termite genome. Nature Communications, 2014, 5, 3636.	5.8	371
6	The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology, 2015, 16, 76.	3.8	330
7	The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle. PLoS Genetics, 2011, 7, e1002007.	1.5	231
8	Hemimetabolous genomes reveal molecular basis of termite eusociality. Nature Ecology and Evolution, 2018, 2, 557-566.	3.4	223
9	Modeling evolutionary landscapes: Mutational stability, topology, and superfunnels in sequence space. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10689-10694.	3.3	222
10	Metabolism of halophilic archaea. Extremophiles, 2008, 12, 177-196.	0.9	214
11	Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality. Genome Research, 2013, 23, 1235-1247.	2.4	205
12	RNA folding and combinatory landscapes. Physical Review E, 1993, 47, 2083-2099.	0.8	202
13	Arrangements in the modular evolution of proteins. Trends in Biochemical Sciences, 2008, 33, 444-451.	3.7	193
14	The interface of protein structure, protein biophysics, and molecular evolution. Protein Science, 2012, 21, 769-785.	3.1	188
15	Transcriptomic resilience to global warming in the seagrass <i>Zostera marina</i> , a marine foundation species. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19276-19281.	3.3	184
16	Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans. Immunobiology, 2008, 213, 237-250.	0.8	178
17	Switching from Simple to Complex Oscillations in Calcium Signaling. Biophysical Journal, 2000, 79, 1188-1195.	0.2	169
18	One Billion Years of bZIP Transcription Factor Evolution: Conservation and Change in Dimerization and DNA-Binding Site Specificity. Molecular Biology and Evolution, 2006, 24, 827-835.	3.5	155

#	Article	IF	CITATIONS
19	Gene content evolution in the arthropods. Genome Biology, 2020, 21, 15.	3.8	150
20	Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genomics, 2011, 12, 227.	1.2	140
21	Genomic and Morphological Evidence Converge to Resolve the Enigma of Strepsiptera. Current Biology, 2012, 22, 1309-1313.	1.8	140
22	Genomics of Divergence along a Continuum of Parapatric Population Differentiation. PLoS Genetics, 2015, 11, e1004966.	1.5	135
23	How are model protein structures distributed in sequence space?. Biophysical Journal, 1997, 73, 2393-2403.	0.2	132
24	Mechanisms and Dynamics of Orphan Gene Emergence in Insect Genomes. Genome Biology and Evolution, 2013, 5, 439-455.	1.1	128
25	Computational approaches to identify leucine zippers. Nucleic Acids Research, 1998, 26, 2740-2746.	6.5	120
26	The evolution of domain arrangements in proteins and interaction networks. Cellular and Molecular Life Sciences, 2005, 62, 435-445.	2.4	120
27	Domain deletions and substitutions in the modular protein evolution. FEBS Journal, 2006, 273, 2037-2047.	2.2	117
28	Proteome of Hydra Nematocyst. Journal of Biological Chemistry, 2012, 287, 9672-9681.	1.6	95
29	Dynamics and adaptive benefits of modular protein evolution. Current Opinion in Structural Biology, 2013, 23, 459-466.	2.6	90
30	Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life. BMC Evolutionary Biology, 2011, 11, 8.	3.2	88
31	Recombinatoric exploration of novel folded structures: A heteropolymer-based model of protein evolutionary landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 809-814.	3.3	85
32	Evidence of Interaction Network Evolution by Whole-Genome Duplications: A Case Study in MADS-Box Proteins. Molecular Biology and Evolution, 2006, 24, 670-678.	3.5	84
33	Convergent evolution of gene networks by singleâ€gene duplications in higher eukaryotes. EMBO Reports, 2004, 5, 274-279.	2.0	83
34	Algorithm independent properties of RNA secondary structure predictions. European Biophysics Journal, 1996, 25, 115-130.	1.2	79
35	Distribution of gibberellin biosynthetic genes and gibberellin production in the Gibberella fujikuroi species complex. Phytochemistry, 2005, 66, 1296-1311.	1.4	78
36	Genomeâ€wide patterns of standing genetic variation in a marine population of threeâ€spined sticklebacks. Molecular Ecology, 2013, 22, 635-649.	2.0	78

#	Article	IF	CITATIONS
37	Incipient de novo genes can evolve from frozen accidents that escaped rapid transcript turnover. Nature Ecology and Evolution, 2018, 2, 1626-1632.	3.4	74
38	The look-ahead effect of phenotypic mutations. Biology Direct, 2008, 3, 18.	1.9	73
39	Evaluating Characteristics of De Novo Assembly Software on 454 Transcriptome Data: A Simulation Approach. PLoS ONE, 2012, 7, e31410.	1.1	72
40	Evolution of Circular Permutations in Multidomain Proteins. Molecular Biology and Evolution, 2006, 23, 734-743.	3.5	71
41	Higher-order epistasis shapes the fitness landscape of a xenobiotic-degrading enzyme. Nature Chemical Biology, 2019, 15, 1120-1128.	3.9	71
42	Extensive Copy-Number Variation of Young Genes across Stickleback Populations. PLoS Genetics, 2014, 10, e1004830.	1.5	70
43	Host–Pathogen Coevolution: The Selective Advantage of Bacillus thuringiensis Virulence and Its Cry Toxin Genes. PLoS Biology, 2015, 13, e1002169.	2.6	69
44	The Dynamics and Evolutionary Potential of Domain Loss and Emergence. Molecular Biology and Evolution, 2012, 29, 787-796.	3.5	68
45	Genome-wide transcriptomic responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated heatwave confirm functional types. Marine Genomics, 2014, 15, 65-73.	0.4	68
46	Dynamics and Adaptive Benefits of Protein Domain Emergence and Arrangements during Plant Genome Evolution. Genome Biology and Evolution, 2012, 4, 316-329.	1.1	66
47	Identifying core features of adaptive metabolic mechanisms for chronic heat stress attenuation contributing to systems robustness. Integrative Biology (United Kingdom), 2012, 4, 480.	0.6	65
48	Phylogeographic differentiation versus transcriptomic adaptation to warm temperatures in <i>Zostera marina</i> , a globally important seagrass. Molecular Ecology, 2016, 25, 5396-5411.	2.0	64
49	A structural model of latent evolutionary potentials underlying neutral networks in proteins. HFSP Journal, 2007, 1, 79-87.	2.5	61
50	Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceaeplants. BMC Plant Biology, 2010, 10, 219.	1.6	61
51	Infection routes matter in population-specific responses of the red flour beetle to the entomopathogen Bacillus thuringiensis. BMC Genomics, 2014, 15, 445.	1.2	60
52	Mechanisms of transcription factor evolution in Metazoa. Nucleic Acids Research, 2016, 44, 6287-6297.	6.5	60
53	Fact or fiction: updates on how protein-coding genes might emerge de novo from previously non-coding DNA. F1000Research, 2017, 6, 57.	0.8	60
54	A Continuum of Evolving De Novo Genes Drives Protein-Coding Novelty in Drosophila. Journal of Molecular Evolution, 2020, 88, 382-398.	0.8	60

#	Article	IF	CITATIONS
55	Escape from Adaptive Conflict follows from weak functional trade-offs and mutational robustness. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14888-14893.	3.3	59
56	How do new proteins arise?. Current Opinion in Structural Biology, 2010, 20, 390-396.	2.6	57
57	Comparative Analysis of Expressed Sequence Tag (EST) Libraries in the Seagrass Zostera marina Subjected to Temperature Stress. Marine Biotechnology, 2008, 10, 297-309.	1.1	55
58	DoMosaics: software for domain arrangement visualization and domain-centric analysis of proteins. Bioinformatics, 2014, 30, 282-283.	1.8	52
59	Transcriptome profiling of immune tissues reveals habitatâ€specific gene expression between lake and river sticklebacks. Molecular Ecology, 2016, 25, 943-958.	2.0	49
60	Structure and function of naturally evolved de novo proteins. Current Opinion in Structural Biology, 2021, 68, 175-183.	2.6	49
61	Conceptual data modelling for bioinformatics. Briefings in Bioinformatics, 2002, 3, 166-180.	3.2	43
62	Just how versatile are domains?. BMC Evolutionary Biology, 2008, 8, 285.	3.2	43
63	Genomic divergence between nine- and three-spined sticklebacks. BMC Genomics, 2013, 14, 756.	1.2	42
64	Perspectives on protein evolution from simple exact models. Applied Bioinformatics, 2002, 1, 121-44.	1.7	42
65	Application of constraint programming techniques for structure prediction of lattice proteins with extended alphabets. Bioinformatics, 1999, 15, 234-242.	1.8	41
66	Evolution of Protein Domain Repeats in Metazoa. Molecular Biology and Evolution, 2016, 33, 3170-3182.	3.5	41
67	Rapid motif-based prediction of circular permutations in multi-domain proteins. Bioinformatics, 2005, 21, 932-937.	1.8	40
68	How Do Genomes Create Novel Phenotypes? Insights from the Loss of the Worker Caste in Ant Social Parasites. Molecular Biology and Evolution, 2015, 32, 2919-2931.	3.5	40
69	Structural and functional characterization of a putative de novo gene in Drosophila. Nature Communications, 2021, 12, 1667.	5.8	40
70	DOGMA: domain-based transcriptome and proteome quality assessment. Bioinformatics, 2016, 32, 2577-2581.	1.8	39
71	The <i>goddard</i> and <i>saturn</i> genes are essential for <i>Drosophila</i> male fertility and may have arisen <i>de novo</i> . Molecular Biology and Evolution, 2017, 34, msx057.	3.5	39
72	A protein interaction atlas for the nuclear receptors: properties and quality of a hub-based dimerisation network. BMC Systems Biology, 2007, 1, 34.	3.0	38

#	Article	IF	CITATIONS
73	Dr. Zompo: an online data repository for Zostera marina and Posidonia oceanica ESTs. Database: the Journal of Biological Databases and Curation, 2009, 2009, bap009-bap009.	1.4	38
74	Emergence of <i>de novo</i> proteins from †dark genomic matter' by †grow slow and moult'. Biochemical Society Transactions, 2015, 43, 867-873.	1.6	38
75	Rapid similarity search of proteins using alignments of domain arrangements. Bioinformatics, 2014, 30, 274-281.	1.8	37
76	Comparing Folding Codes in Simple Heteropolymer Models of Protein Evolutionary Landscape: Robustness of the Superfunnel Paradigm. Biophysical Journal, 2005, 88, 118-131.	0.2	36
77	The Rise and Fall of TRP-N, an Ancient Family of Mechanogated Ion Channels, in Metazoa. Genome Biology and Evolution, 2015, 7, 1713-1727.	1.1	36
78	The modular nature of protein evolution: domain rearrangement rates across eukaryotic life. BMC Evolutionary Biology, 2020, 20, 30.	3.2	33
79	Evolutionary divergence and limits of conserved non-coding sequence detection in plant genomes. Nucleic Acids Research, 2011, 39, 6029-6043.	6.5	32
80	Detection of orphan domains in Drosophila using "hydrophobic cluster analysis― Biochimie, 2015, 119, 244-253.	1.3	31
81	Origins and structural properties of novel and <i>de novo</i> protein domains during insect evolution. FEBS Journal, 2018, 285, 2605-2625.	2.2	30
82	Quantification and functional analysis of modular protein evolution in a dense phylogenetic tree. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 898-907.	1.1	29
83	Reduction/oxidation-phosphorylation control of DNA binding in the bZIP dimerization network. BMC Genomics, 2006, 7, 107.	1.2	27
84	Lifespan prolonging mechanisms and insulin upregulation without fat accumulation in long-lived reproductives of a higher termite. Communications Biology, 2022, 5, 44.	2.0	27
85	Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts. PLoS Computational Biology, 2012, 8, e1002659.	1.5	26
86	Robustness by intrinsically disordered C-termini and translational readthrough. Nucleic Acids Research, 2018, 46, 10184-10194.	6.5	26
87	Reconstructed evolution of insulin receptors in insects reveals duplications in early insects and cockroaches. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 305-311.	0.6	26
88	Stochastic Gain and Loss of Novel Transcribed Open Reading Frames in the Human Lineage. Genome Biology and Evolution, 2020, 12, 2183-2195.	1.1	26
89	TreeWiz: interactive exploration of huge trees. Bioinformatics, 2002, 18, 109-114.	1.8	25
90	High-Throughput, Lysis-Free Screening for Sulfatase Activity Using <i>Escherichia coli</i> Autodisplay in Microdroplets. ACS Synthetic Biology, 2019, 8, 2690-2700.	1.9	25

#	Article	IF	CITATIONS
91	The Evolution of Protein Interaction Networks in Regulatory Proteins. Comparative and Functional Genomics, 2004, 5, 79-84.	2.0	24
92	Evolution of novel genes in three-spined stickleback populations. Heredity, 2020, 125, 50-59.	1.2	24
93	Specific Gene Expression Responses to Parasite Genotypes Reveal Redundancy of Innate Immunity in Vertebrates. PLoS ONE, 2014, 9, e108001.	1.1	23
94	The <i>sieve element occlusion</i> gene family in dicotyledonous plants. Plant Signaling and Behavior, 2011, 6, 151-153.	1.2	22
95	Comparative analysis of lincRNA in insect species. BMC Evolutionary Biology, 2017, 17, 155.	3.2	22
96	The Crohn's disease susceptibility gene DLG5 as a member of the CARD interaction network. Journal of Molecular Medicine, 2008, 86, 423-432.	1.7	20
97	A putative de novo evolved gene required for spermatid chromatin condensation in Drosophila melanogaster. PLoS Genetics, 2021, 17, e1009787.	1.5	20
98	Protein domain evolution is associated with reproductive diversification and adaptive radiation in the genus Eucalyptus. New Phytologist, 2015, 206, 1328-1336.	3.5	19
99	Comparative transcriptomics of stickleback immune gene responses upon infection by two helminth parasites, Diplostomum pseudospathaceum and Schistocephalus solidus. Zoology, 2016, 119, 307-313.	0.6	18
100	Structural and Mechanistic Analysis of the Choline Sulfatase from Sinorhizobium melliloti: A Class I Sulfatase Specific for an Alkyl Sulfate Ester. Journal of Molecular Biology, 2018, 430, 1004-1023.	2.0	18
101	Remodeling of the juvenile hormone pathway through casteâ€biased gene expression and positive selection along a gradient of termite eusociality. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 296-304.	0.6	17
102	Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of Parasitoid and Eusocial Hymenoptera. Genome Biology and Evolution, 2020, 12, 1099-1188.	1.1	17
103	Randomness, Structural Uniqueness, Modularity and Neutral Evolution in Sequence Space of Model Proteins. Zeitschrift Fur Physikalische Chemie, 2002, 216, .	1.4	16
104	Genome-Wide Genotype-Expression Relationships Reveal Both Copy Number and Single Nucleotide Differentiation Contribute to Differential Gene Expression between Stickleback Ecotypes. Genome Biology and Evolution, 2019, 11, 2344-2359.	1.1	16
105	Expansions of key protein families in the German cockroach highlight the molecular basis of its remarkable success as a global indoor pest. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 254-264.	0.6	15
106	Ant behaviour and brain gene expression of defending hosts depend on the ecological success of the intruding social parasite. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180192.	1.8	15
107	WWW access to the SYSTERS protein sequence cluster set. Bioinformatics, 1999, 15, 262-263.	1.8	14
108	Automated Improvement of Domain ANnotations using context analysis of domain arrangements (AIDAN). Bioinformatics, 2007, 23, 1834-1836.	1.8	14

ERICH G BORNBERG-BAUER

#	Article	IF	CITATIONS
109	DOGMA: a web server for proteome and transcriptome quality assessment. Nucleic Acids Research, 2019, 47, W507-W510.	6.5	13
110	Climate change facilitates a parasite's host exploitation via temperatureâ€mediated immunometabolic processes. Global Change Biology, 2021, 27, 94-107.	4.2	13
111	Convergent Loss of Chemoreceptors across Independent Origins of Slave-Making in Ants. Molecular Biology and Evolution, 2022, 39, .	3.5	13
112	Immunity comes first: The effect of parasite genotypes on adaptive immunity and immunization in three-spined sticklebacks. Developmental and Comparative Immunology, 2016, 54, 137-144.	1.0	12
113	Domain similarity based orthology detection. BMC Bioinformatics, 2015, 16, 154.	1.2	11
114	Hybrid Genome Assembly of a Neotropical Mutualistic Ant. Genome Biology and Evolution, 2019, 11, 2306-2311.	1.1	11
115	Phylogenetic profiling of protein interaction networks in eukaryotic transcription factors reveals focal proteins being ancestral to hubs. Gene, 2005, 347, 247-253.	1.0	10
116	Gene Coexpression Network Reveals Highly Conserved, Well-Regulated Anti-Ageing Mechanisms in Old Ant Queens. Genome Biology and Evolution, 2021, 13, .	1.1	10
117	New Genomic Signals Underlying the Emergence of Human Proto-Genes. Genes, 2022, 13, 284.	1.0	10
118	Evolvability and Single-Genotype Fluctuation in Phenotypic Properties: AÂSimple Heteropolymer Model. Biophysical Journal, 2010, 98, 2487-2496.	0.2	9
119	Tribolium castaneum gene expression changes after Paranosema whitei infection. Journal of Invertebrate Pathology, 2018, 153, 92-98.	1.5	9
120	Evolutionary Potential of Cis-Regulatory Mutations to Cause Rapid Changes in Transcription Factor Binding. Genome Biology and Evolution, 2019, 11, 406-414.	1.1	9
121	A genetic variant alters the secondary structure of the lncRNA H19 and is associated with dilated cardiomyopathy. RNA Biology, 2021, 18, 409-415.	1.5	9
122	Heterologous expression of naturally evolved putative <i>de novo</i> proteins with chaperones. Protein Science, 2022, 31, .	3.1	8
123	Robustness versus evolvability: A paradigm revisited. HFSP Journal, 2010, 4, 105-108.	2.5	7
124	Evolutionary dynamics of simple sequence repeats across long evolutionary time scale in genus Drosophila. Trends in Evolutionary Biology, 2012, 4, 7.	0.4	7
125	A putative transcription factor inducing mobility in Mycoplasma pneumoniae. Microbiology (United) Tj ETQq1 1	0.784314	rgBT /Overloo
126	Comparative analyses of caste, sex, and developmental stageâ€specific transcriptomes in two Temnothorax ants. Ecology and Evolution, 2020, 10, 4193-4203.	0.8	6

#	Article	IF	CITATIONS
127	MDAT- Aligning multiple domain arrangements. BMC Bioinformatics, 2015, 16, 19.	1.2	5
128	Becoming a de novo gene. Nature Ecology and Evolution, 2019, 3, 524-525.	3.4	5
129	The Evolution of Protein Interaction Networks. Methods in Molecular Biology, 2011, 696, 273-289.	0.4	5
130	Signals: Tinkering with Domains. Science Signaling, 2010, 3, pe31.	1.6	4
131	Simple folding model for HP lattice proteins. Lecture Notes in Computer Science, 1996, , 125-136.	1.0	3
132	Random structures and evolution of biopolymers: A computational case study on RNA secondary structures. Pharmaceutica Acta Helvetiae, 1996, 71, 79-85.	1.2	3
133	Comparative genomic approaches to investigate molecular traits specific to social insects. Current Opinion in Insect Science, 2016, 16, 87-94.	2.2	3
134	Finding Common Protein Interaction Patterns Across Organisms. Evolutionary Bioinformatics, 2006, 2, 117693430600200.	0.6	2
135	A Roadmap to Domain Based Proteomics. Methods in Molecular Biology, 2019, 1851, 287-300.	0.4	2
136	Genomic and Morphological Evidence Converge to Resolve the Enigma of Strepsiptera. Current Biology, 2013, 23, 1388.	1.8	1
137	Enzyme subâ€functionalization driven by regulation. EMBO Reports, 2017, 18, 1043-1045.	2.0	1
138	Random structures and evolution of biopolymers. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 1128-1128.	0.9	0
139	EVOLUTION OF REGULATORY NETWORKS. Complex Systems and Interdisciplinary Science, 2007, , 257-289.	0.2	0
140	The first cockroach genome and its significance for understanding development and the evolution of insect eusociality. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 251-253.	0.6	0
141	Ancestral sequences of a large promiscuous enzyme family correspond to bridges in sequence space in a network representation. Journal of the Royal Society Interface, 2021, 18, 20210389.	1.5	0
142	Finding common protein interaction patterns across organisms. Evolutionary Bioinformatics, 2007, 2, 45-52.	0.6	0