Takuya Imamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3269442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roles of epigenetics in the neural stem cell and neuron. , 2021, , 53-84.		0
2	MeCP2 controls neural stem cell fate specification through miR-199a-mediated inhibition of BMP-Smad signaling. Cell Reports, 2021, 35, 109124.	2.9	22
3	Generation of ovarian follicles from mouse pluripotent stem cells. Science, 2021, 373, .	6.0	88
4	The evolutionary acquisition and mode of functions of promoter-associated non-coding RNAs (pancRNAs) for mammalian development. Essays in Biochemistry, 2021, 65, 697-708.	2.1	5
5	Neuronal activation modulates enhancer activity of genes for excitatory synaptogenesis through <i>de novo</i> DNA methylation. Journal of Reproduction and Development, 2021, , .	0.5	0
6	Neural stem/precursor cells dynamically change their epigenetic landscape to differentially respond to BMP signaling for fate switching during brain development. Genes and Development, 2021, 35, 1431-1444.	2.7	11
7	SoxE group transcription factor Sox8 promotes astrocytic differentiation of neural stem/precursor cells downstream of Nfia. Pharmacology Research and Perspectives, 2021, 9, e00749.	1.1	9
8	Inducible <i>Kiss1</i> knockdown in the hypothalamic arcuate nucleus suppressed pulsatile secretion of luteinizing hormone in male mice. Journal of Reproduction and Development, 2020, 66, 369-375.	0.5	19
9	Modeling of early neural development in vitro by direct neurosphere formation culture of chimpanzee induced pluripotent stem cells. Stem Cell Research, 2020, 44, 101749.	0.3	7
10	Conditional kisspeptin neuron-specific <i>Kiss1</i> knockout with newly generated <i>Kiss1</i> -floxed and <i>Kiss1</i> -Cre mice replicates a hypogonadal phenotype of global <i>Kiss1</i> knockout mice. Journal of Reproduction and Development, 2020, 66, 359-367.	0.5	21
11	Pioneer Factor NeuroD1 Rearranges Transcriptional and Epigenetic Profiles to Execute Microglia-Neuron Conversion. Neuron, 2019, 101, 472-485.e7.	3.8	161
12	Epigenetic regulation of neural stem cell differentiation towards spinal cord regeneration. Cell and Tissue Research, 2018, 371, 189-199.	1.5	24
13	Evolutionary acquisition of promoter-associated non-coding RNA (pancRNA) repertoires diversifies species-dependent gene activation mechanisms in mammals. BMC Genomics, 2017, 18, 285.	1.2	23
14	Detection of Bidirectional Promoter-Derived IncRNAs from Small-Scale Samples Using Pre-Amplification-Free Directional RNA-seq Method. Methods in Molecular Biology, 2017, 1605, 83-103.	0.4	5
15	Manipulation of Promoter-Associated Noncoding RNAs in Mouse Early Embryos for Controlling Sequence-Specific Epigenetic Status. Methods in Molecular Biology, 2017, 1543, 271-282.	0.4	2
16	DNA Methylome Analysis Identifies Transcription Factor-Based Epigenomic Signatures of Multilineage Competence in Neural Stem/Progenitor Cells. Cell Reports, 2017, 20, 2992-3003.	2.9	45
17	Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature, 2016, 539, 299-303.	13.7	470
18	Bidirectional promoters link cAMP signaling with irreversible differentiation through promoter-associated non-coding RNA (pancRNA) expression in PC12 cells. Nucleic Acids Research, 2016, 44, 5105-5122.	6.5	16

Τακυγά Ιμαμυγά

#	Article	IF	CITATIONS
19	miR-199a Links MeCP2 with mTOR Signaling and Its Dysregulation Leads to Rett Syndrome Phenotypes. Cell Reports, 2015, 12, 1887-1901.	2.9	81
20	Gene activation-associated long noncoding RNAs function in mouse preimplantation development. Development (Cambridge), 2015, 142, 910-20.	1.2	92
21	ldentification of Hypothalamic Arcuate Nucleus-Specific Enhancer Region of Kiss1 Gene in Mice. Molecular Endocrinology, 2015, 29, 121-129.	3.7	16
22	Bidirectional promoters are the major source of gene activation-associated non-coding RNAs in mammals. BMC Genomics, 2014, 15, 35.	1.2	106
23	Roles of Epigenetics in the Neural Stem Cell and Neuron. , 2014, , 51-78.		1
24	Epigenetic setting and reprogramming for neural cell fate determination and differentiation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130511.	1.8	29
25	Epigenetic regulation of <i>Kiss1</i> gene expression mediating estrogen-positive feedback action in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1294-301.	3.3	122
26	Cell - to Species-Level Diversity of Epigenetic Setting for Androgen Receptor Expression in Mammals. Journal of Steroids & Hormonal Science, 2012, 01, .	0.1	1
27	Epigenetic setting for long-term expression of estrogen receptor α and androgen receptor in cells. Hormones and Behavior, 2011, 59, 345-352.	1.0	21
28	Involvement of brain ketone bodies and the noradrenergic pathway in diabetic hyperphagia in rats. Journal of Physiological Sciences, 2011, 61, 103-113.	0.9	21
29	Single-stranded Noncoding RNAs Mediate Local Epigenetic Alterations at Gene Promoters in Rat Cell Lines. Journal of Biological Chemistry, 2011, 286, 34788-34799.	1.6	34
30	Epigenetic processes in a tetraploid mammal. Mammalian Genome, 2008, 19, 439-447.	1.0	12
31	Dynamic CpG and Non-CpG Methylation of the Peg1/Mest Gene in the Mouse Oocyte and Preimplantation Embryo. Journal of Biological Chemistry, 2005, 280, 20171-20175.	1.6	91
32	Genomic Imprinting. , 2005, , 690-693.		0
33	Essential role for poly (ADP-ribosyl)ation in mouse preimplantation development. BMC Molecular Biology, 2004, 5, 4.	3.0	25
34	Non-coding RNA directed DNA demethylation of Sphk1 CpG island. Biochemical and Biophysical Research Communications, 2004, 322, 593-600.	1.0	145
35	Identification of Genetic and Epigenetic Similarities of SPHK1/Sphk1 in Mammals. Journal of Veterinary Medical Science, 2004, 66, 1387-1393.	0.3	17
36	Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes To Cells, 2002, 7, 961-969.	0.5	183

#	Article	IF	CITATIONS
37	CpG Island of Rat Sphingosine Kinase-1 Gene: Tissue-Dependent DNA Methylation Status and Multiple Alternative First Exons. Genomics, 2001, 76, 117-125.	1.3	108
38	Generation and Characterization of a Monoclonal Antibody Recognizing a Fetal Brain Enriched O-Linked Sialoglycoprotein, FOG100. Journal of Biochemistry, 1998, 124, 534-539.	0.9	2