Takuya Imamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3269442/publications.pdf

Version: 2024-02-01

38 papers

2,035 citations

361045 20 h-index 34 g-index

38 all docs 38 docs citations

38 times ranked 2645 citing authors

#	Article	IF	CITATIONS
1	Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature, 2016, 539, 299-303.	13.7	470
2	Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes To Cells, 2002, 7, 961-969.	0.5	183
3	Pioneer Factor NeuroD1 Rearranges Transcriptional and Epigenetic Profiles to Execute Microglia-Neuron Conversion. Neuron, 2019, 101, 472-485.e7.	3.8	161
4	Non-coding RNA directed DNA demethylation of Sphk1 CpG island. Biochemical and Biophysical Research Communications, 2004, 322, 593-600.	1.0	145
5	Epigenetic regulation of <i>Kiss1</i> gene expression mediating estrogen-positive feedback action in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1294-301.	3.3	122
6	CpG Island of Rat Sphingosine Kinase-1 Gene: Tissue-Dependent DNA Methylation Status and Multiple Alternative First Exons. Genomics, 2001, 76, 117-125.	1.3	108
7	Bidirectional promoters are the major source of gene activation-associated non-coding RNAs in mammals. BMC Genomics, 2014, 15, 35.	1.2	106
8	Gene activation-associated long noncoding RNAs function in mouse preimplantation development. Development (Cambridge), 2015, 142, 910-20.	1.2	92
9	Dynamic CpG and Non-CpG Methylation of the Peg1/Mest Gene in the Mouse Oocyte and Preimplantation Embryo. Journal of Biological Chemistry, 2005, 280, 20171-20175.	1.6	91
10	Generation of ovarian follicles from mouse pluripotent stem cells. Science, 2021, 373, .	6.0	88
11	miR-199a Links MeCP2 with mTOR Signaling and Its Dysregulation Leads to Rett Syndrome Phenotypes. Cell Reports, 2015, 12, 1887-1901.	2.9	81
12	DNA Methylome Analysis Identifies Transcription Factor-Based Epigenomic Signatures of Multilineage Competence in Neural Stem/Progenitor Cells. Cell Reports, 2017, 20, 2992-3003.	2.9	45
13	Single-stranded Noncoding RNAs Mediate Local Epigenetic Alterations at Gene Promoters in Rat Cell Lines. Journal of Biological Chemistry, 2011, 286, 34788-34799.	1.6	34
14	Epigenetic setting and reprogramming for neural cell fate determination and differentiation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130511.	1.8	29
15	Essential role for poly (ADP-ribosyl)ation in mouse preimplantation development. BMC Molecular	3.0	25
	Biology, 2004, 5, 4.		
16	Epigenetic regulation of neural stem cell differentiation towards spinal cord regeneration. Cell and Tissue Research, 2018, 371, 189-199.	1.5	24
16	Epigenetic regulation of neural stem cell differentiation towards spinal cord regeneration. Cell and	1.5	24

#	Article	IF	CITATIONS
19	Epigenetic setting for long-term expression of estrogen receptor \hat{l}_{\pm} and androgen receptor in cells. Hormones and Behavior, 2011, 59, 345-352.	1.0	21
20	Involvement of brain ketone bodies and the noradrenergic pathway in diabetic hyperphagia in rats. Journal of Physiological Sciences, 2011, 61, 103-113.	0.9	21
21	Conditional kisspeptin neuron-specific <i>Kiss1</i> knockout with newly generated <i>Kiss1</i> -floxed and <i>Kiss1</i> -Cre mice replicates a hypogonadal phenotype of global <i>Kiss1</i> knockout mice. Journal of Reproduction and Development, 2020, 66, 359-367.	0.5	21
22	Inducible <i>Kiss1</i> knockdown in the hypothalamic arcuate nucleus suppressed pulsatile secretion of luteinizing hormone in male mice. Journal of Reproduction and Development, 2020, 66, 369-375.	0.5	19
23	Identification of Genetic and Epigenetic Similarities of SPHK1/Sphk1 in Mammals. Journal of Veterinary Medical Science, 2004, 66, 1387-1393.	0.3	17
24	Identification of Hypothalamic Arcuate Nucleus-Specific Enhancer Region of Kiss1 Gene in Mice. Molecular Endocrinology, 2015, 29, 121-129.	3.7	16
25	Bidirectional promoters link cAMP signaling with irreversible differentiation through promoter-associated non-coding RNA (pancRNA) expression in PC12 cells. Nucleic Acids Research, 2016, 44, 5105-5122.	6.5	16
26	Epigenetic processes in a tetraploid mammal. Mammalian Genome, 2008, 19, 439-447.	1.0	12
27	Neural stem/precursor cells dynamically change their epigenetic landscape to differentially respond to BMP signaling for fate switching during brain development. Genes and Development, 2021, 35, 1431-1444.	2.7	11
28	SoxE group transcription factor Sox8 promotes astrocytic differentiation of neural stem/precursor cells downstream of Nfia. Pharmacology Research and Perspectives, 2021, 9, e00749.	1.1	9
29	Modeling of early neural development in vitro by direct neurosphere formation culture of chimpanzee induced pluripotent stem cells. Stem Cell Research, 2020, 44, 101749.	0.3	7
30	Detection of Bidirectional Promoter-Derived IncRNAs from Small-Scale Samples Using Pre-Amplification-Free Directional RNA-seq Method. Methods in Molecular Biology, 2017, 1605, 83-103.	0.4	5
31	The evolutionary acquisition and mode of functions of promoter-associated non-coding RNAs (pancRNAs) for mammalian development. Essays in Biochemistry, 2021, 65, 697-708.	2.1	5
32	Generation and Characterization of a Monoclonal Antibody Recognizing a Fetal Brain Enriched O-Linked Sialoglycoprotein, FOG100. Journal of Biochemistry, 1998, 124, 534-539.	0.9	2
33	Manipulation of Promoter-Associated Noncoding RNAs in Mouse Early Embryos for Controlling Sequence-Specific Epigenetic Status. Methods in Molecular Biology, 2017, 1543, 271-282.	0.4	2
34	Roles of Epigenetics in the Neural Stem Cell and Neuron. , 2014, , 51-78.		1
35	Cell - to Species-Level Diversity of Epigenetic Setting for Androgen Receptor Expression in Mammals. Journal of Steroids & Hormonal Science, 2012, 01, .	0.1	1
36	Roles of epigenetics in the neural stem cell and neuron. , 2021, , 53-84.		0

#	Article	IF	CITATIONS
37	Neuronal activation modulates enhancer activity of genes for excitatory synaptogenesis through <i>de novo</i> DNA methylation. Journal of Reproduction and Development, 2021, , .	0.5	O
38	Genomic Imprinting. , 2005, , 690-693.		0