Soojin Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3269311/publications.pdf

Version: 2024-02-01

32 papers	1,937 citations	304368 22 h-index	454577 30 g-index
• •			
32 all docs	32 docs citations	32 times ranked	1505 citing authors

#	Article	IF	CITATIONS
1	Automated crack evaluation of a highâ€rise bridge pier using a ringâ€type climbing robot. Computer-Aided Civil and Infrastructure Engineering, 2021, 36, 14-29.	6.3	63
2	Deep-Learning-Based Segmentation of Fresh or Young Concrete Sections from Images of Construction Sites. Materials, 2021, 14, 6311.	1.3	4
3	Automated Multiple Concrete Damage Detection Using Instance Segmentation Deep Learning Model. Applied Sciences (Switzerland), 2020, 10, 8008.	1.3	42
4	Based on Intelligent Wireless Sensing System for Safety of Urban Facilities. The Journal of Korean Institute of Information Technology, 2020, 18, 143-156.	0.1	0
5	A New Probabilistic Framework for Structural System Fragility and Sensitivity Analysis of Concrete Gravity Dams. KSCE Journal of Civil Engineering, 2019, 23, 3592-3605.	0.9	2
6	Imageâ€based concrete crack assessment using mask and regionâ€based convolutional neural network. Structural Control and Health Monitoring, 2019, 26, e2381.	1.9	130
7	Uniaxial Static Stress Estimation for Concrete Structures Using Digital Image Correlation. Sensors, 2019, 19, 319.	2.1	8
8	Hyperspectral Super-Resolution Technique Using Histogram Matching and Endmember Optimization. Applied Sciences (Switzerland), 2019, 9, 4444.	1.3	0
9	Development of Image Processing for Crack Detection on Concrete Structures through Terrestrial Laser Scanning Associated with the Octree Structure. Applied Sciences (Switzerland), 2018, 8, 2373.	1.3	31
10	Automated Vision-Based Detection of Cracks on Concrete Surfaces Using a Deep Learning Technique. Sensors, 2018, 18, 3452.	2.1	197
11	Image-based Spalling Detection of Concrete Structures Using Deep Learning. Journal of the Korea Concrete Institute, 2018, 30, 91-99.	0.1	11
12	Comparative analysis of image binarization methods for crack identification in concrete structures. Cement and Concrete Research, 2017, 99, 53-61.	4.6	144
13	Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing. Sensors, 2017, 17, 2052.	2.1	143
14	Computer Vision-Based Structural Displacement Measurement Robust to Light-Induced Image Degradation for In-Service Bridges. Sensors, 2017, 17, 2317.	2.1	63
15	Reference-Free Displacement Estimation of Bridges Using Kalman Filter-Based Multimetric Data Fusion. Journal of Sensors, 2016, 2016, 1-9.	0.6	28
16	SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating. Sensors, 2016, 16, 317.	2.1	26
17	Data fusion of acceleration and angular velocity for improved model updating. Measurement: Journal of the International Measurement Confederation, 2016, 91, 239-250.	2.5	14
18	Concrete Crack Assessment Using Digital Image Processing and 3D Scene Reconstruction. Journal of Computing in Civil Engineering, 2016, 30, .	2.5	96

#	Article	IF	CITATIONS
19	Recent advances in wireless smart sensors for multi-scale monitoring and control of civil infrastructure. Journal of Civil Structural Health Monitoring, 2016, 6, 17-41.	2.0	74
20	Sensor Attitude Correction of Wireless Sensor Network for Accelerationâ€Based Monitoring of Civil Structures. Computer-Aided Civil and Infrastructure Engineering, 2015, 30, 859-871.	6.3	30
21	System identification of a historic swing truss bridge using a wireless sensor network employing orientation correction. Structural Control and Health Monitoring, 2015, 22, 255-272.	1.9	30
22	Decentralized System Identification Using Stochastic Subspace Identification for Wireless Sensor Networks. Sensors, 2015, 15, 8131-8145.	2.1	16
23	Displacement estimation of bridge structures using data fusion of acceleration and strain measurement incorporating finite element model. Smart Structures and Systems, 2015, 15, 645-663.	1.9	34
24	A wireless smart sensor network for automated monitoring of cable tension. Smart Materials and Structures, 2014, 23, 025006.	1.8	48
25	A new multi-objective approach to finite element model updating. Journal of Sound and Vibration, 2014, 333, 2323-2338.	2.1	54
26	Extension of indirect displacement estimation method using acceleration and strain to various types of beam structures. Smart Structures and Systems, 2014, 14, 699-718.	1.9	35
27	Automated assessment of cracks on concrete surfaces using adaptive digital image processing. Smart Structures and Systems, 2014, 14, 719-741.	1.9	58
28	Hybrid wireless smart sensor network for full-scale structural health monitoring of a cable-stayed bridge. Proceedings of SPIE, $2011, \ldots$	0.8	19
29	Development of an Automated Wireless Tension Force Estimation System for Cable-stayed Bridges. Journal of Intelligent Material Systems and Structures, 2010, 21, 361-376.	1.4	56
30	Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation. Smart Structures and Systems, 2010, 6, 439-459.	1.9	361
31	Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses. Smart Structures and Systems, 2010, 6, 461-480.	1.9	109
32	Structural performance evaluation of a steel-plate girder bridge using ambient acceleration measurements. Smart Structures and Systems, 2007, 3, 281-298.	1.9	11