
Angel Ezquerra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3269104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD200R family receptors are expressed on porcine monocytes and modulate the production of IL-8 and TNF-α triggered by TLR4 or TLR7 in these cells. Molecular Immunology, 2022, 144, 166-177.	2.2	1
2	CD9 expression in porcine blood CD4+ T cells delineates two subsets with phenotypic characteristics of central and effector memory cells. Developmental and Comparative Immunology, 2022, 133, 104431.	2.3	1
3	Expression of CLEC4A in porcine tissues and leukocyte populations and characterization of mRNA splice variants. Molecular Immunology, 2021, 132, 157-164.	2.2	0
4	Porcine CLEC12B is expressed on alveolar macrophages and blood dendritic cells. Developmental and Comparative Immunology, 2020, 111, 103767.	2.3	5
5	Characterization of the Porcine CLEC12A and Analysis of Its Expression on Blood Dendritic Cell Subsets. Frontiers in Immunology, 2020, 11, 863.	4.8	8
6	Phenotypic and functional characterization of porcine bone marrow monocyte subsets. Developmental and Comparative Immunology, 2018, 81, 95-104.	2.3	6
7	Interaction of PRRS virus with bone marrow monocyte subsets. Veterinary Microbiology, 2018, 219, 123-127.	1.9	3
8	Splenic CD163+ macrophages as targets of porcine reproductive and respiratory virus: Role of Siglecs. Veterinary Microbiology, 2017, 198, 72-80.	1.9	7
9	Phenotypic and functional heterogeneity of CD169+ and CD163+ macrophages from porcine lymph nodes and spleen. Developmental and Comparative Immunology, 2014, 44, 44-49.	2.3	19
10	Pig Skin Includes Dendritic Cell Subsets Transcriptomically Related to Human CD1a and CD14 Dendritic Cells Presenting Different Migrating Behaviors and T Cell Activation Capacities. Journal of Immunology, 2014, 193, 5883-5893.	0.8	50
11	Delivery of antigen to sialoadhesin or CD163 improves the specific immune response in pigs. Vaccine, 2011, 29, 4813-4820.	3.8	30
12	Immunomodulatory effect of swine CCL20 chemokine in DNA vaccination against CSFV. Veterinary Immunology and Immunopathology, 2011, 142, 243-251.	1.2	11
13	Porcine monocyte subsets differ in the expression of CCR2 and in their responsiveness to CCL2. Veterinary Research, 2010, 41, 76.	3.0	34
14	Targeting to porcine sialoadhesin receptor receptor improves antigen presentation to T cells. Veterinary Research, 2009, 40, 14.	3.0	32
15	Expression of toll-like receptor 2 (TLR2) in porcine leukocyte subsets and tissues. Veterinary Research, 2008, 39, 13.	3.0	34
16	Molecular cloning characterization and expression of porcine immunoreceptor SIRPα. Developmental and Comparative Immunology, 2007, 31, 307-318.	2.3	10
17	Molecular cloning, characterization and tissue expression of porcine Toll-like receptor 4. Developmental and Comparative Immunology, 2006, 30, 345-355.	2.3	26
18	Phenotypic and functional heterogeneity of porcine blood monocytes and its relation with maturation. Immunology, 2005, 114, 63-71.	4.4	76

Angel Ezquerra

#	Article	IF	CITATIONS
19	In vitro differentiation of porcine blood CD163â^ and CD163+ monocytes into functional dendritic cells. Immunobiology, 2004, 209, 57-65.	1.9	39
20	In vitro effect of classical swine fever virus on a porcine aortic endothelial cell line. Veterinary Research, 2004, 35, 625-633.	3.0	9
21	Characterization of a novel activation antigen on porcine lymphocytes recognized by monoclonal antibody 5A6/8. Veterinary Research, 2004, 35, 339-348.	3.0	0
22	Induction of aggregation in porcine lymphoid cells by antibodies to CD46. Veterinary Immunology and Immunopathology, 2000, 73, 73-81.	1.2	3
23	Phenotypic Characterization of Monocyte Subpopulations in the Pig. Immunobiology, 2000, 202, 82-93.	1.9	38
24	Monoclonal antibodies to a high molecular weight isoform of porcine CD45: biochemical and tissue distribution analyses. Veterinary Immunology and Immunopathology, 1997, 56, 151-162.	1.2	21
25	Characterization of five monoclonal antibodies specific for swine class II major histocompatibility antigens and crossreactivity studies with leukocytes of domestic animals. Developmental and Comparative Immunology, 1997, 21, 311-322.	2.3	27
26	Mouse autoreactive \hat{I}_3 / \hat{I}^{\prime} T cells II. Molecular characterization of the T cell receptor. European Journal of Immunology, 1992, 22, 491-498.	2.9	26
27	Structural analysis of HLA-A2.4 functional variant KNE. Implications for the mapping of HLA-A2-specific T-cell epitopes. Immunogenetics, 1988, 27, 196-202.	2.4	26
28	An HLA-A2 population variant with structural polymorphism in the ?3 region. Immunogenetics, 1988, 27, 345-355.	2.4	20
29	Primary structure of papain-solubilized human histocompatibility antigen HLA-B27. Biochemistry, 1985, 24, 1733-1741.	2.5	48
30	Variability and conformation of HLA class I antigens: a predictive approach to the spatial arrangement of polymorphic regions. Biochemistry, 1984, 23, 823-831.	2.5	21
31	Location of antigenic determinants in polymorphic areas of histocompatibility antigens. Biochemical and Biophysical Research Communications, 1982, 107, 1545-1550.	2.1	2