Liang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3268767/publications.pdf Version: 2024-02-01

LIANC CHEN

#	Article	IF	CITATIONS
1	General synthesis of hollow MnO ₂ , Mn ₃ O ₄ and MnO nanospheres as superior anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 17421-17426.	10.3	213
2	Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 1037-1041.	10.3	192
3	Controlled Growth of Porous αâ€Fe ₂ O ₃ Branches on βâ€MnO ₂ Nanorods for Excellent Performance in Lithiumâ€Ion Batteries. Advanced Functional Materials, 2013, 23, 4049-4056.	14.9	181
4	A general approach for MFe 2 O 4 (MÂ=ÂZn, Co, Ni) nanorods and their high performance as anode materials for lithium ion batteries. Journal of Power Sources, 2014, 247, 163-169.	7.8	158
5	Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy, 2014, 6, 193-199.	16.0	154
6	Novel mesoporous silicon nanorod as an anode material for lithium ion batteries. Electrochimica Acta, 2014, 127, 252-258.	5.2	95
7	Surfaceâ€Amorphous and Oxygenâ€Deficient Li ₃ VO _{4â^'<i>δ</i>} as a Promising Anode Material for Lithiumâ€lon Batteries. Advanced Science, 2015, 2, 1500090.	11.2	90
8	Hydrogenated TiO ₂ Branches Coated Mn ₃ O ₄ Nanorods as an Advanced Anode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 10348-10355.	8.0	81
9	Facile synthesis of hierarchically porous NiO micro-tubes as advanced anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 16847-16850.	10.3	73
10	A comparative study of lithium-storage performances of hematite: Nanotubes vs. nanorods. Journal of Power Sources, 2014, 245, 429-435.	7.8	62
11	Hierarchical core–shell α-Fe2O3@C nanotubes as a high-rate and long-life anode for advanced lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 3439-3444.	10.3	55
12	Fluorine anion doped Na0.44MnO2 with layer-tunnel hybrid structure as advanced cathode for sodium ion batteries. Journal of Power Sources, 2019, 427, 129-137.	7.8	55
13	Hierarchically Porous CuCo 2 O 4 Microflowers: a Superior Anode Material for Li-ion Batteries and a Stable Cathode Electrocatalyst for Li-O 2 Batteries. Electrochimica Acta, 2016, 208, 148-155.	5.2	53
14	Curly hard carbon derived from pistachio shells as high-performance anode materials for sodium-ion batteries. Journal of Materials Science, 2018, 53, 12334-12351.	3.7	47
15	Hierarchical vanadium pentoxide microflowers with excellent long-term cyclability at high rates for lithium ion batteries. Journal of Power Sources, 2014, 272, 991-996.	7.8	46
16	Analysis and porthole die design for a multi-hole extrusion process of a hollow, thin-walled aluminum profile. International Journal of Advanced Manufacturing Technology, 2014, 74, 383-392.	3.0	43
17	Fast and scalable synthesis of durable Na0.44MnO2 cathode material via an oxalate precursor method for Na-ion batteries. Electrochimica Acta, 2017, 258, 1035-1043.	5.2	42
18	Lath-shaped biomass derived hard carbon as anode materials with super rate capability for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2019, 841, 63-72.	3.8	39

LIANG CHEN

#	Article	IF	CITATIONS
19	Hot Deformation Behaviors and Processing Maps of 2024 Aluminum Alloy in As-cast and Homogenized States. Journal of Materials Engineering and Performance, 2015, 24, 5002-5012.	2.5	38
20	Effect of different carbon sources on the electrochemical properties of rod-like LiMnPO4–C nanocomposites. RSC Advances, 2013, 3, 6847.	3.6	37
21	Coaxial Manganese Dioxide@N-doped Carbon Nanotubes as Superior Anodes for Lithium Ion Batteries. Electrochimica Acta, 2015, 182, 676-681.	5.2	37
22	Development of sulfonated-carbon nanotubes/graphene three-dimensional conductive spongy framework with ion-selective effect as cathode in high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2021, 409, 128164.	12.7	34
23	Fluoroethylene carbonate as an additive in a carbonates-based electrolyte for enhancing the specific capacity of room-temperature sodium-sulfur cell. Journal of Electroanalytical Chemistry, 2019, 832, 392-398.	3.8	33
24	Copper and Zirconium Codoped O3-Type Sodium Iron and Manganese Oxide as the Cobalt/Nickel-Free High-Capacity and Air-Stable Cathode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 45528-45537.	8.0	33
25	Tunnel-structured Na _{0.54} Mn _{0.50} Ti _{0.51} O ₂ and Na _{0.54} Mn _{0.50} Ti _{0.51} O ₂ /C nanorods as advanced cathode materials for sodium-ion batteries. Chemical Communications, 2015, 51, 8480-8483.	4.1	32
26	Facile Fabrication of a Three-Dimensional Cross-Linking TiO ₂ Nanowire Network and Its Long-Term Cycling Life for Lithium Storage. ACS Applied Materials & Interfaces, 2014, 6, 10107-10112.	8.0	31
27	Low-Strain Reticular Sodium Manganese Oxide as an Ultrastable Cathode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 14174-14184.	8.0	24
28	Trimethyl Phosphate for Nonflammable Carbonateâ€Based Electrolytes for Safer Roomâ€īemperature Sodiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 1229-1234.	3.4	23
29	Effects of ram velocity on pyramid die extrusion of hollow aluminum profile. International Journal of Advanced Manufacturing Technology, 2015, 79, 2117-2125.	3.0	22
30	Correlation between homogenization treatment and subsequent hot extrusion of Al–Mg–Si alloy. Journal of Materials Science, 2019, 54, 9843-9856.	3.7	21
31	Layered P3 type K0.48Ni0.2Co0.2Mn0.6O2 with microspherical and microcubic mixed morphology as a cathode material for potassium-ion batteries. Materials Letters, 2020, 270, 127733.	2.6	19
32	Cobalt vanadium layered double Hydroxide/FeOOH heterostructure catalyst with strong electron interactions for stable oxygen evolution performance. Composites Communications, 2021, 27, 100780.	6.3	18
33	Application and analysis of spread die and flat container in the extrusion of a large-size, hollow, and flat-wide aluminum alloy profile. International Journal of Advanced Manufacturing Technology, 2018, 94, 4247-4263.	3.0	17
34	The critical role of titanium cation in the enhanced performance of P2-Na _{0.5} Ni _{0.25} Mn _{0.60} Ti _{0.15} O ₂ cathode material for sodium-ion batteries. Physical Chemistry Chemical Physics, 2020, 22, 19992-19998.	2.8	17
35	Evaluation of a pyramid die extrusion for a hollow aluminum profile using FE simulation. Journal of Mechanical Science and Technology, 2015, 29, 2195-2203.	1.5	16
36	Investigation on longitudinal weld seams during porthole die extrusion process of high strength 7075 aluminum alloy. International Journal of Advanced Manufacturing Technology, 2017, 91, 1897-1907.	3.0	16

LIANG CHEN

#	Article	IF	CITATIONS
37	A 3D stable and highly conductive scaffold with carbon nanotubes/carbon fiber as electrode for lithium sulfur batteries. Materials Letters, 2019, 251, 180-183.	2.6	15
38	Study on solid bonding behavior of AZ31 Mg alloy during porthole die extrusion process. International Journal of Advanced Manufacturing Technology, 2017, 93, 2791-2799.	3.0	12
39	Flame retardancy and toughening modification of glass fiber-reinforced polycarbonate composites. Polymer Journal, 2019, 51, 657-665.	2.7	10
40	Preform optimization and microstructure analysis on hot precision forging process of a half axle flange. International Journal of Advanced Manufacturing Technology, 2018, 95, 2157-2167.	3.0	9
41	Effects of thermoplastic elastomer on the morphology and mechanical properties of glass fiberâ€reinforced polycarbonate/acrylonitrile–butadiene–styrene. Polymer Engineering and Science, 2019, 59, E144.	3.1	9
42	Designing Sodium Manganese Oxide with 4 d ation Zr Doping as a Highâ€Rateâ€Performance Cathode fo Sodiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 2545-2552.	^r 3.4	9
43	Flameâ€retardant, thermal and mechanical properties of <scp>PLA</scp> /ramie fiber composites. Polymer Composites, 2022, 43, 4244-4254.	4.6	9
44	An Investigation on the Anisotropic Plastic Behavior and Forming Limits of an Al-Mg-Li Alloy Sheet. Journal of Materials Engineering and Performance, 2021, 30, 8224-8234.	2.5	8
45	Flow behavior and constitutive description of 20CrMnTi steel at high temperature. Journal of Central South University, 2018, 25, 1013-1024.	3.0	7
46	In situ fabrication of 3D self-supporting cobalt phosphate-modified graphite felt electrocatalysts for oxygen evolution reaction in neutral solution. Journal of Electroanalytical Chemistry, 2020, 862, 114031.	3.8	7
47	Surface modification of Na0.44MnO2 via a nonaqueous solution-assisted coating for ultra-Stable and High-Rate sodium-ion batteries. Chemical Engineering Journal Advances, 2022, 10, 100292.	5.2	7
48	Bimodal Phenomenon of the Stress–Strain Curve During Hot Compression of LA43M Mg–Li Alloy. Metals and Materials International, 2021, 27, 4195-4203.	3.4	6
49	Evaluation of Co–Au bimetallic nanoparticles as anode electrocatalyst for direct borohydride-hydrogen peroxide fuel cell. Ionics, 2021, 27, 3521.	2.4	6
50	Investigation on microstructure and mechanical properties of Al–5.50Zn–2.35Mg–1.36Cu alloy fabricated by hot extrusion process. Journal of Materials Research, 2019, 34, 3151-3162.	2.6	5
51	A Heterostructured Sulfonated CNT/Sulfur/CNT Cathode for Promoting the Binary Conversion of Polysulfides in Lithiumâ€Metal Batteries. Batteries and Supercaps, 2022, 5, .	4.7	4
52	Experimental Study and Optimization on Solution and Artificial Aging of Cold-Rolled 2024 Al Alloy Sheet. Journal of Materials Engineering and Performance, 2022, 31, 5419-5431.	2.5	4
53	A Novel Core–Shell Structure TiO ₂ Nanolayer Sphere Preparation and Electrocatalytic Degradation Study. Science of Advanced Materials, 2022, 14, 576-580.	0.7	4
54	TiO2/Sunflower Seed Shell-derived Carbon Micro Fiber Hybrids as Promising Anode Materials for Sodium-ion Batteries. International Journal of Electrochemical Science, 2017, 12, 1929-1942.	1.3	2

LIANG CHEN

#	Article	IF	CITATIONS
55	Electrochemical redox kinetic behavior of S8 and Na2S (n = 2, 4, 6, 8) on vulcan XC-72R carbon in a flowing-electrolyte system. Journal of Power Sources, 2020, 478, 229074.	7.8	2
56	Investigation on Hydrogen-Induced Delayed Fracture of Cold-Rolled DP980 Steels. Journal of Materials Engineering and Performance, 2017, 26, 2024-2031.	2.5	1
57	Designing Sodium Manganese Oxide with 4 dâ€Cation Zr Doping as a Highâ€Rateâ€Performance Cathode f Sodiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 2497-2497.	or 3.4	0