List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3268313/publications.pdf Version: 2024-02-01

DINCEAN XII

#	Article	IF	CITATIONS
1	Probing Anionâ~ïi€ Interactions between Fluoroarene and Carboxylate Anion in Aqueous Solutions. Journal of Colloid and Interface Science, 2022, 615, 778-785.	5.0	5
2	Effect of mechanical properties on the selfâ€healing behavior of waterborne polyurethane coatings. Journal of Applied Polymer Science, 2022, 139, .	1.3	11
3	Recovery of the Foot Loading Patterns of Children with Excess Weight after Losing Weight: A 3-Year Longitudinal Study. Children, 2022, 9, 595.	0.6	0
4	Sustainable Indicators Based on Furfural-Derived Colorant-Doped Biobased Polyurethane to Improve Food Safety. ACS Sustainable Chemistry and Engineering, 2022, 10, 8624-8630.	3.2	3
5	Low-Power Near-Infrared-Responsive Upconversion Nanovectors. ACS Applied Materials & Interfaces, 2021, 13, 7094-7101.	4.0	8
6	Load Transference with the Gain of Excessive Body Mass: A Two-Year Longitudinal Study. International Journal of Environmental Research and Public Health, 2021, 18, 2879.	1.2	3
7	Preparation of Flame-Retardant Polyurethane and Its Applications in the Leather Industry. Polymers, 2021, 13, 1730.	2.0	26
8	808Ânm Nearâ€Infrared Lightâ€Triggered Payload Release from Green Lightâ€Responsive Donor–Acceptor Stenhouse Adducts Polymerâ€Coated Upconversion Nanoparticles. Macromolecular Rapid Communications, 2021, 42, 2100318.	2.0	6
9	Spiropyranâ€Appended Cucurbit[6]uril Enabling Direct Generation of 2D Materials inside Living Cells. Small, 2021, , 2102392.	5.2	5
10	Treatment of microfiber alkali weightâ€reduction wastewater with high salt concentration by Fenton oxidation and bacterial degradation. Water and Environment Journal, 2020, 34, 309-319.	1.0	2
11	Study on the release behaviors of berberine hydrochloride based on sandwich nanostructure and shape memory effect. Materials Science and Engineering C, 2020, 109, 110541.	3.8	20
12	Sustainable Advanced Fenton-like Catalysts Based on Mussel-Inspired Magnetic Cellulose Nanocomposites to Effectively Remove Organic Dyes and Antibiotics. ACS Applied Materials & Interfaces, 2020, 12, 51952-51959.	4.0	64
13	A Fluorescent Polyurethane with Covalently Cross-Linked Rhodamine Derivatives. Polymers, 2020, 12, 1989.	2.0	5
14	Antibacterial and Antioxidant Composite Fiber Prepared from Polyurethane and Polyacrylonitrile Containing Tea Polyphenols. Fibers and Polymers, 2020, 21, 103-110.	1.1	16
15	Poly(methylmethacrylate) microspheres with matting characteristic prepared by dispersion polymerization. International Journal of Polymer Analysis and Characterization, 2019, 24, 731-740.	0.9	9
16	Facile synthesis of a triptyceneâ€based porous organic polymer with a high efficiency and recyclable adsorption for organic dyes. Journal of Applied Polymer Science, 2019, 136, 47987.	1.3	25
17	Light-mediated formation and dissociation of a two-dimensional supramolecular polymer sheet: one step closer to sustainability. Journal of Materials Chemistry A, 2019, 7, 13180-13187.	5.2	5
18	Z-Schemed WO3/rGO/SnIn4S8 Sandwich Nanohybrids for Efficient Visible Light Photocatalytic Water Purification. Catalysts, 2019, 9, 187.	1.6	23

#	Article	IF	CITATIONS
19	A thermochromic luminous polyurethane based on long persistent luminescent phosphors and thermochromic pigment. New Journal of Chemistry, 2018, 42, 5066-5070.	1.4	15
20	Surfactant-assisted hydrothermal synthesis of rGO/SnIn ₄ S ₈ nanosheets and their application in complete removal of Cr(<scp>vi</scp>). RSC Advances, 2018, 8, 5749-5759.	1.7	30
21	Synthesis of selfa€matting waterborne polyurethane coatings with excellent transmittance. Polymer International, 2018, 67, 78-84.	1.6	38
22	Switchable Control of Antibiotic Activity: A Shape-Shifting "Tail―Strategy. Bioconjugate Chemistry, 2018, 29, 74-82.	1.8	7
23	Synthesis and Application of Phosphorus-containing Flame Retardant Plasticizer for Polyvinyl Chloride. Fibers and Polymers, 2018, 19, 1057-1063.	1.1	24
24	Sulfonated poly(styrene-divinylbenzene-glycidyl methacrylate)-capsulated magnetite nanoparticles as a recyclable catalyst for one-step biodiesel production from high free fatty acid-containing feedstocks. New Journal of Chemistry, 2018, 42, 13074-13080.	1.4	11
25	Synthesis, Characterization, and Optical Performance of a Novel Fluorescent Waterborne Polyurethane. Advances in Polymer Technology, 2017, 36, 137-144.	0.8	4
26	Flame retardancy, mechanical, and thermal properties of waterborne polyurethane conjugated with a novel phosphorous-nitrogen intumescent flame retardant. Polymer Composites, 2017, 38, 452-462.	2.3	31
27	Enhanced properties of polyvinyl chloride modified by graphene reinforced thermoplastic polyurethane. Polymer International, 2017, 66, 925-930.	1.6	5
28	Stepwise Deprotonation of Magnetite-Supported Gallic Acid Modulates Oxidation State and Adsorption-Assisted Translocation of Hexavalent Chromium. ACS Applied Materials & Interfaces, 2017, 9, 15525-15532.	4.0	27
29	Hydroxyl-decorated ammonium polyphosphate as flame retardant reinforcing agent in solvent-free two-component polyurethane. Polymer International, 2017, 66, 1598-1609.	1.6	9
30	Improving collagen extraction through an alternative strategy based on succinic anhydride pretreatment to retain collagen's tripleâ€helix structure. Journal of Applied Polymer Science, 2017, 134, 45424.	1.3	18
31	A photochromic long persistent luminescent polyurethane based on a colour conversion process. New Journal of Chemistry, 2017, 41, 15405-15410.	1.4	8
32	Collagen modified with epoxidized safrole for improving antibacterial activity. RSC Advances, 2017, 7, 50300-50306.	1.7	11
33	Synthesis of core-shell fluorinated acrylate copolymers and its application as finishing agent for textile. Fibers and Polymers, 2017, 18, 1848-1857.	1.1	11
34	Novel environmentally sustainable cardanol-based plasticizers: synthesis and properties. Polymer International, 2016, 65, 464-472.	1.6	20
35	Interfacial regions in spherical nanoparticle-doped glassy polymers: interfaces or interphases?. Polymer Chemistry, 2016, 7, 3398-3405.	1.9	6
36	Polyacrylic acid-grafted magnetite nanoparticles for remediation of Pb(II)-contained water. Fibers and Polymers, 2016, 17, 1131-1139.	1.1	14

#	Article	IF	CITATIONS
37	Synergistic effect of phosphorus–nitrogen and silicon-containing chain extenders on the mechanical properties, flame retardancy and thermal degradation behavior of waterborne polyurethane. RSC Advances, 2016, 6, 72409-72422.	1.7	40
38	Sunlightâ€activated long persistent luminescent polyurethane incorporated with aminoâ€functionalized <scp>SrAl₂O₄</scp> :Eu ²⁺ ,Dy ³⁺ phosphor. Polymer International, 2016, 65, 1238-1244.	1.6	17
39	Effect of surface free energy and wettability on the adhesion property of waterborne polyurethane adhesive. RSC Advances, 2016, 6, 99346-99352.	1.7	32
40	Waterborne polyurethane conjugated with novel diol chain-extender bearing cyclic phosphoramidate lateral group: synthesis, flammability and thermal degradation mechanism. RSC Advances, 2016, 6, 56610-56622.	1.7	20
41	Remediation of chromium(<scp>iii</scp>)-contaminated tannery effluents by using gallic acid-conjugated magnetite nanoparticles. RSC Advances, 2016, 6, 29054-29063.	1.7	37
42	Design, characterization, dyeing properties, and application of acid-dyeable polyurethane in the manufacture of microfiber synthetic leather. Fibers and Polymers, 2015, 16, 1970-1980.	1.1	17
43	Novel environmentally sustainable cardanol-based plasticizer covalently bound to PVC via click chemistry: synthesis and properties. RSC Advances, 2015, 5, 16980-16985.	1.7	59
44	A magnetically-separable Fe ₃ O ₄ nanoparticle surface grafted with polyacrylic acid for chromium(<scp>iii</scp>) removal from tannery effluents. RSC Advances, 2015, 5, 50126-50136.	1.7	42
45	Poly(N-acryloyl ciprofloxacin-co-acrylic acid) grafted magnetite nanoparticles for microbial decontamination of collagen solution: have we conquered the problem of antimicrobial residues?. Polymer Chemistry, 2015, 6, 8150-8160.	1.9	13
46	Preparation of Thermal and pH Dually Sensitive Polyurethane Membranes and Their Properties. Journal of Macromolecular Science - Physics, 2014, 53, 398-411.	0.4	11
47	Asymmetric polyurethane membrane with inflammation-responsive antibacterial activity for potential wound dressing application. Journal of Materials Science, 2013, 48, 6625-6639.	1.7	26
48	Synthesis and Characterization of Highly Organosoluble Polyimides Based on a New Asymmetric Dianhydride. Designed Monomers and Polymers, 2012, 15, 53-62.	0.7	12
49	Studies on organosoluble polyimides based on a series of new asymmetric and symmetric dianhydrides: Structure/solubility and thermal property relationships. Macromolecular Research, 2012, 20, 10-20.	1.0	17
50	Electrospun in-situ hybrid polyurethane/nano-TiO2 as wound dressings. Fibers and Polymers, 2011, 12, 207-213.	1.1	51
51	The Biodegradabilities of Different Oil-Based Fatliquors. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1029-1036.	0.8	22
52	Asymmetric polyurethane membrane with <i>in situâ€</i> generated nanoâ€TiO ₂ as wound dressing. Journal of Applied Polymer Science, 2011, 119, 1532-1541.	1.3	76
53	Nano-SiO2 in-situ hybrid polyurethane leather coating with enhanced breathability. Fibers and Polymers, 2010, 11, 241-248.	1.1	7
54	Antimicrobial polyurethane synthetic leather coating with In-situ generated Nano-TiO2. Fibers and Polymers, 2010, 11, 689-694.	1.1	25

#	Article	IF	CITATIONS
55	Thermal sensitive polyurethane membranes with desirable switch temperatures. Macromolecular Research, 2010, 18, 1053-1059.	1.0	6
56	A Novel Biodegradable Fluorine-Containing Copolymer Surfactant. Journal of Polymers and the Environment, 2010, 18, 339-345.	2.4	2
57	Thermosensitive polyurethane film and finished leather with controllable water vapor permeability. Journal of Applied Polymer Science, 2010, 117, 1820-1827.	1.3	6
58	Thermo-sensitive polyurethane membrane with controllable water vapor permeation for food packaging. Macromolecular Research, 2009, 17, 528-532.	1.0	23
59	Water vapor permeability of the polyurethane/TiO2 nanohybrid membrane with temperature sensitivity. Journal of Applied Polymer Science, 2008, 109, 3002-3007.	1.3	26
60	Novel side-chain liquid-crystalline polyimide for film materials. Journal of Polymer Science Part A, 2003, 41, 554-559.	2.5	10
61	In-situ self reinforced polyimide for film materials. Polymer International, 2001, 50, 1331-1337.	1.6	2