Wen-yi Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3268202/publications.pdf

Version: 2024-02-01

158 3,082 27 44 papers citations h-index g-index

175 175 175 3279
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Antrodia cinnamomea exerts an anti-hepatoma effect by targeting PI3K/AKT-mediated cell cycle progression inÂvitro and inÂvivo. Acta Pharmaceutica Sinica B, 2022, 12, 890-906.	5.7	19
2	Structural characterization and anticoagulant activity of homogalacturonan from durian peel. Journal of Molecular Structure, 2022, 1248, 131467.	1.8	8
3	The Effect of Flammulina velutipes Polysaccharide on Immunization Analyzed by Intestinal Flora and Proteomics. Frontiers in Nutrition, 2022, 9, 841230.	1.6	24
4	Structural Characterization and Anticoagulant Activity of a 3-O-Methylated Heteroglycan From Fruiting Bodies of Pleurotus placentodes. Frontiers in Chemistry, 2022, 10, 825127.	1.8	3
5	Hepatoprotective Effect of Actinidia deliciosa against Streptozotocin-Induced Oxidative Stress, Apoptosis, and Inflammations in Rats. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-11.	1.9	8
6	A glucomannogalactan from Pleurotus geesteranus: Structural characterization, chain conformation and immunological effect. Carbohydrate Polymers, 2022, 287, 119346.	5.1	24
7	Actinidia deliciosa Mitigates Oxidative Stress and Changes in Pancreatic \hat{l}_{\pm} -, \hat{l}^2 -, and \hat{l} -Cells and Immunohistochemical and Histological Architecture in Diabetic Rats. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-10.	0.5	1
8	Analysis of Volatile Components in Tremella fuciformis by Electronic Nose Combined with GC-MS. Journal of Food Quality, 2022, 2022, 1-11.	1.4	2
9	Diversified Polyketides With Anti-inflammatory Activities From Mangrove Endophytic Fungus Daldinia eschscholtzii KBJYZ-1. Frontiers in Microbiology, 2022, 13, .	1.5	2
10	Immunoregulatory polysaccharides from Apocynum venetum L. flowers stimulate phagocytosis and cytokine expression via activating the NF-κB/MAPK signaling pathways in RAW264.7 cells. Food Science and Human Wellness, 2022, 11, 806-814.	2.2	18
11	The Immunomodulatory Effects of Active Ingredients From Nigella sativa in RAW264.7 Cells Through NF-κB/MAPK Signaling Pathways. Frontiers in Nutrition, 2022, 9, .	1.6	10
12	Anti-Inflammatory Phytoconstituents of Origanum Majorana. Journal of Food Quality, 2022, 2022, 1-7.	1.4	0
13	Identification of phytochemicals from Lentinus edodes and Auricularia auricula with UPLC-Q-Exactive Orbitrap MS. Journal of Future Foods, 2022, 2, 253-260.	2.0	5
14	Anti-inflammatory and antioxidant effects of Chaetoglobosin Vb in LPS-induced RAW264.7Âcells: Achieved via the MAPK and NF-κB signaling pathways. Food and Chemical Toxicology, 2021, 147, 111915.	1.8	30
15	Activation of RAW264.7 cells by PCp-I, a polysaccharide from Psoralea corylifolia L, through NF-κB/MAPK signalling pathway. International Journal of Immunopathology and Pharmacology, 2021, 35, 205873842110100.	1.0	9
16	Effects of edpetiline from Fritillaria on inflammation and oxidative stress induced by LPS stimulation in RAW264.7 macrophages. Acta Biochimica Et Biophysica Sinica, 2021, 53, 229-237.	0.9	7
17	Mechanism of Intestinal Flora and Proteomics on Regulating Immune Function of Durio zibethinus Rind Polysaccharide. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-20.	1.9	5
18	Structural Identification and Coagulation Effect of Flammulina velutipes Polysaccharides. Applied Sciences (Switzerland), 2021, 11, 1736.	1.3	13

#	Article	IF	Citations
19	Antibacterial Mechanism of Dihydrotanshinone I. Natural Product Communications, 2021, 16, 1934578X2199615.	0.2	1
20	Nine Unique Iridoids and Iridoid Glycosides From Patrinia scabiosaefolia. Frontiers in Chemistry, 2021, 9, 657028.	1.8	4
21	Phytochemistry and Biological Activities of Poria. Journal of Chemistry, 2021, 2021, 1-20.	0.9	14
22	Glucose absorption regulation and mechanism of the compounds in Lilium lancifolium Thunb on Caco-2Âcells. Food and Chemical Toxicology, 2021, 149, 112010.	1.8	9
23	Chemical Constituents and Coagulation Activity of Amygdalus persica L. Flowers. Natural Product Communications, 2021, 16, 1934578X2110043.	0.2	3
24	A rapid method and mechanism to identify the active compounds in Malus micromalus Makino fruit with spectrum-effect relationship, components knock-out and molecular docking technology. Food and Chemical Toxicology, 2021, 150, 112086.	1.8	16
25	Chemical Constituents and Coagulation Activity of Amygdalus persica L. Flowers. Journal of Food Quality, 2021, 2021, 1-7.	1.4	3
26	The effect of microbial composition and proteomic on improvement of functional constipation by Chrysanthemum morifolium polysaccharide. Food and Chemical Toxicology, 2021, 153, 112305.	1.8	47
27	Immunomodulatory effects of polysaccharides from edible fungus: a review. Food Science and Human Wellness, 2021, 10, 393-400.	2.2	95
28	Antrodia cinnamomea ameliorates neointimal formation by inhibiting inflammatory cell infiltration through downregulation of adhesion molecule expression in vitro and in vivo. Food Science and Human Wellness, 2021, 10, 421-430.	2.2	6
29	From mouse to mouseâ€ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration, 2021, 1, 9-20.	5.4	27
30	Immunomodulatory effects of Nigella sativa seed polysaccharides by gut microbial and proteomic technologies. International Journal of Biological Macromolecules, 2021, 184, 483-496.	3.6	21
31	Nigella sativa: A Dietary Supplement as an Immune-Modulator on the Basis of Bioactive Components. Frontiers in Nutrition, 2021, 8, 722813.	1.6	10
32	Origanum majorana L.: A Nutritional Supplement With Immunomodulatory Effects. Frontiers in Nutrition, 2021, 8, 748031.	1.6	5
33	Chemical Components and Biological Effects of Genus Origanum. Journal of Food Quality, 2021, 2021, 1-19.	1.4	3
34	Two novel heteroglycan with coagulant activity from flowers of Cercis chinensis Bunge. Journal of Molecular Structure, 2021, 1243, 130756.	1.8	7
35	Two Alkaloids From Delphinium brunonianum Royle, Their Anti-inflammatory and Anti-oxidative Stress Activity via NF-κB Signaling Pathway. Frontiers in Nutrition, 2021, 8, 826957.	1.6	6
36	Inflammatory Response and Oxidative Stress as Mechanism of Reducing Hyperuricemia of Gardenia jasminoides-Poria cocos with Network Pharmacology. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-18.	1.9	17

#	Article	IF	CITATIONS
37	Polysaccharides from edible fungi Pleurotus spp.: advances and perspectives. Journal of Future Foods, 2021, 1, 128-140.	2.0	28
38	Reversing UVBâ€induced photoaging with <i>Hibiscus sabdariffa</i> calyx aqueous extract. Journal of the Science of Food and Agriculture, 2020, 100, 672-681.	1.7	13
39	Evaluation Procoagulant Activity and Mechanism of Astragalin. Molecules, 2020, 25, 177.	1.7	18
40	CYPs-mediated drug-drug interactions on psoralidin, isobavachalcone, neobavaisoflavone and daidzein in rats liver microsomes. Food and Chemical Toxicology, 2020, 136, 111027.	1.8	16
41	Physical properties of mucilage polysaccharides from Dioscorea opposita Thunb. Food Chemistry, 2020, 311, 126039.	4.2	31
42	Review of Compounds and Pharmacological Effects of <i>Delphinium</i> . Journal of Chemistry, 2020, 2020, 1-23.	0.9	6
43	Isokotomolide A from Cinnamomum kotoense Induce Melanoma Autophagy and Apoptosis <i>In Vivo</i> and <i>In Vitro</i> . Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-16.	1.9	5
44	Bromelain from Ananas comosus stem attenuates oxidative toxicity and testicular dysfunction caused by aluminum in rats. Journal of Trace Elements in Medicine and Biology, 2020, 62, 126631.	1.5	16
45	Effective Compounds From <i>Caesalpinia sappan</i> L. on the Tyrosinase In Vitro and In Vivo. Natural Product Communications, 2020, 15, 1934578X2092005.	0.2	9
46	Recent Progress on Chemical Constituents and Pharmacological Effects of the Genus <i>Nigella</i> Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-15.	0.5	11
47	An immunomodulatory polysaccharide from blackberry seeds and its action on RAW 264.7 cells <i>via</i> activation of NF-1ºB/MAPK pathways. Food and Agricultural Immunology, 2020, 31, 575-586.	0.7	8
48	Anti-Hepatoma Compound Determination by the Method of Spectrum Effect Relationship, Component Knock-Out, and UPLC-MS2 in Scheflera heptaphylla (L.)Frodin Harms and Its Mechanism. Frontiers in Pharmacology, 2020, 11, 1342.	1.6	13
49	A Novel Oral Astaxanthin Nanoemulsion from Haematococcus pluvialis Induces Apoptosis in Lung Metastatic Melanoma. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-13.	1.9	26
50	Anticancer Effects and Mechanisms of Action of Plumbagin: Review of Research Advances. BioMed Research International, 2020, 2020, 1-10.	0.9	57
51	Antioxidant and α-glucosidase inhibitiory activity of Cercis chinensis flowers. Food Science and Human Wellness, 2020, 9, 313-319.	2.2	25
52	lonic Liquid-Based Ultrasonic-Assisted Extraction Coupled with HPLC and Artificial Neural Network Analysis for Ganoderma lucidum. Molecules, 2020, 25, 1309.	1.7	10
53	Antioxidant Graphene Oxide Nanoribbon as a Novel Whitening Agent Inhibits Microphthalmia-Associated Transcription Factor-Related Melanogenesis Mechanism. ACS Omega, 2020, 5, 6588-6597.	1.6	15
54	Effects of Polysaccharide from <i>Malus halliana</i> Koehne Flowers in Cyclophosphamide-Induced Immunosuppression and Oxidative Stress on Mice. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-10.	1.9	32

#	Article	IF	Citations
55	Natural products: Regulating glucose metabolism and improving insulin resistance. Food Science and Human Wellness, 2020, 9, 214-228.	2.2	38
56	Preparation and characterization of edible films composed of Dioscorea opposita Thunb. mucilage and starch. Polymer Testing, 2020, 90, 106708.	2.3	28
57	Nonpolar Extract from Caragana boisi Flowers. Chemistry of Natural Compounds, 2020, 56, 147-148.	0.2	0
58	Advances in the detection of virulence genes of Staphylococcus aureus originate from food. Food Science and Human Wellness, 2020, 9, 40-44.	2.2	26
59	Chemical composition and glucose uptake effect on 3T3-L1 adipocytes of Ligustrum lucidum Ait. flowers. Food Science and Human Wellness, 2020, 9, 124-129.	2.2	13
60	Trelagliptin succinate: DPP-4 inhibitor to improve insulin resistance in adipocytes. Biomedicine and Pharmacotherapy, 2020, 125, 109952.	2.5	16
61	Effect of Durio zibethinus rind polysaccharide on functional constipation and intestinal microbiota in rats. Food Research International, 2020, 136, 109316.	2.9	53
62	Effects of Nigella sativa seed polysaccharides on type 2 diabetic mice and gut microbiota. International Journal of Biological Macromolecules, 2020, 159, 725-738.	3.6	57
63	Natural Products: Review for Their Effects of Anti-HBV. BioMed Research International, 2020, 2020, 1-24.	0.9	11
64	Efficient Extraction of Anti-Inflammatory Active Ingredients from Schefflera octophylla Leaves Using Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with HPLC. Molecules, 2019, 24, 2942.	1.7	13
65	Spectrum-effect relationship of antioxidant and tyrosinase activity with Malus pumila flowers by UPLC-MS/MS and component knock-out method. Food and Chemical Toxicology, 2019, 133, 110754.	1.8	28
66	Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum) Tj ETQq0 () 0 <u>rg</u> BT /0	verlock 10 Tf
67	Optimum Extraction Technology for the Seed Oil of Nigella sativa L Journal of Food Quality, 2019, 2019, 1-6.	1.4	4
68	Dynamic changes of secondary metabolites and tyrosinase activity of Malus pumila flowers. BMC Chemistry, 2019, 13, 81.	1.6	4
69	The Mechanism of Phillyrin from the Leaves of <i> Forsythia suspensa </i> for Improving Insulin Resistance. BioMed Research International, 2019, 2019, 1-7.	0.9	16
70	Antimicrobial Mechanism of Hydroquinone. Applied Biochemistry and Biotechnology, 2019, 189, 1291-1303.	1.4	61
71	Two Novel Polysaccharides in Psoralea corylifolia L and anti-A549 Lung Cancer Cells Activity In Vitro. Molecules, 2019, 24, 3733.	1.7	10
72	Chemical constituents and coagulation activity of Syringa oblata Lindl flowers. BMC Chemistry, 2019, 13, 108.	1.6	14

#	Article	lF	Citations
73	A critical review on chemical constituents and pharmacological effects of Lilium. Food Science and Human Wellness, 2019, 8, 330-336.	2.2	39
74	Chaetomadrasins A and B, Two New Cytotoxic Cytochalasans from Desert Soil-Derived Fungus Chaetomium madrasense 375. Molecules, 2019, 24, 3240.	1.7	23
75	Effects and mechanisms of iridoid glycosides from Patrinia scabiosaefolia on improving insulin resistance in 3T3-L1 adipocytes. Food and Chemical Toxicology, 2019, 134, 110806.	1.8	12
76	A novel polysaccharide from Malus halliana Koehne with coagulant activity. Carbohydrate Research, 2019, 485, 107813.	1.1	15
77	Alizarin increase glucose uptake through PI3K/Akt signaling and improve alloxan-induced diabetic mice. Future Medicinal Chemistry, 2019, 11, 395-406.	1.1	23
78	lonic Liquid-Based Ultrasonic-Assisted Extraction to Analyze Seven Compounds in Psoralea Fructus Coupled with HPLC. Molecules, 2019, 24, 1699.	1.7	16
79	Pharmacological Effects of Verticine: Current Status. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-8.	0.5	8
80	Comparative analysis of antioxidant activities of essential oils and extracts of fennel (Foeniculum) Tj ETQq0 0 0	rgB <u>T</u> <u>/</u> Ove	rlock_10 Tf 50
81	Immunomodulation of ADPs-1a and ADPs-3a on RAW264.7 cells through NF-κB/MAPK signaling pathway. International Journal of Biological Macromolecules, 2019, 132, 1024-1030.	3.6	49
82	Chemical Constituents of Cercis chinensis Leaves. Chemistry of Natural Compounds, 2019, 55, 107-109.	0.2	7
83	Coagulant Effects and Mechanism of Schefflera heptaphylla (L.) Frodin. Molecules, 2019, 24, 4547.	1.7	6
84	Evaluation antithrombotic activity and action mechanism of myricitrin. Industrial Crops and Products, 2019, 129, 536-541.	2.5	17
85	Anticoagulant activity of two novel polysaccharides from flowers of Apocynum venetum L International Journal of Biological Macromolecules, 2019, 124, 1230-1237.	3.6	37
86	Antithrombotic components of Malus halliana Koehne flowers. Food and Chemical Toxicology, 2018, 119, 326-333.	1.8	38
87	Volatiles in Flowers, Stems, and Leaves of Calliandra haematocephala. Chemistry of Natural Compounds, 2018, 54, 337-338.	0.2	O
88	Efficient determination of three flavonoids in Malus pumila flowers by ionic liquid-HPLC. Journal of Molecular Liquids, 2018, 263, 139-146.	2.3	11
89	Chemical Constituents of Bacillus coagulans LL1103. Chemistry of Natural Compounds, 2018, 54, 419-420.	0.2	10
90	ZnO nanotubes supported molecularly imprinted polymers arrays as sensing materials for electrochemical detection of dopamine. Talanta, 2018, 176, 573-581.	2.9	66

#	Article	IF	Citations
91	Procoagulant constituents from Cordyceps militaris. Food Science and Human Wellness, 2018, 7, 282-286.	2.2	10
92	I157172, a novel inhibitor of cystathionine \hat{I}^3 -lyase, inhibits growth and migration of breast cancer cells via SIRT1-mediated deacetylation of STAT3. Oncology Reports, 2018, 41, 427-436.	1.2	20
93	Screening the Marker Components in Psoralea corylifolia L. with the Aids of Spectrum-Effect Relationship and Component Knock-Out by UPLC-MS2. International Journal of Molecular Sciences, 2018, 19, 3439.	1.8	25
94	Coagulatory active constituents of Malus pumila Mill. flowers. Chemistry Central Journal, 2018, 12, 126.	2.6	9
95	Antibacterial mechanism of chelerythrine isolated from root of Toddalia asiatica (Linn) Lam. BMC Complementary and Alternative Medicine, 2018, 18, 261.	3.7	83
96	Effect of <i>Malus halliana</i> Koehne Polysaccharides on Functional Constipation. Open Chemistry, 2018, 16, 956-962.	1.0	6
97	The mechanism of antibacterial activity of corylifolinin against three clinical bacteria from Psoralen corylifolia L. Open Chemistry, 2018, 16, 882-889.	1.0	14
98	Effect of <i>Flammulina velutipes</i> (golden needle mushroom, eno-kitake) polysaccharides on constipation. Open Chemistry, 2018, 16, 155-162.	1.0	20
99	Dynamic Changes of Secondary Metabolites and Antioxidant Activity of <i>Ligustrum lucidum</i> During Fruit Growth. Open Chemistry, 2018, 16, 99-107.	1.0	1
100	Simultaneous determination of myricetrin, quercitrin and afzelin in leaves of Cercis chinensis by a fast and effective method of ionic liquid microextraction coupled with HPLC. Chemistry Central Journal, 2018, 12, 23.	2.6	11
101	Dynamic Change of Secondary Metabolites and spectrum-effect relationship of <i>Malus halliana</i> Koehne flowers during blooming. Open Chemistry, 2018, 16, 362-370.	1.0	8
102	Molecularly imprinted solid phase extraction method for simultaneous determination of seven nitroimidazoles from honey by HPLC-MS/MS. Talanta, 2017, 166, 101-108.	2.9	38
103	Induction of apoptosis by FFJ-5, a novel naphthoquinone compound, occurs via downregulation of PKM2 in A549 and HepG2 cells. Oncology Letters, 2017, 13, 791-799.	0.8	4
104	Chemical constituents and coagulation activity of Agastache rugosa. BMC Complementary and Alternative Medicine, 2017, 17, 93.	3.7	32
105	Antithrombotic effect and mechanism of Rubus spp. Blackberry. Food and Function, 2017, 8, 2000-2012.	2.1	28
106	Volatile Composition of Jatropha podagrica Seeds and Flowers. Chemistry of Natural Compounds, 2017, 53, 165-166.	0.2	0
107	FFJ-3 inhibits PKM2 protein expression via the PI3K/Akt signaling pathway and activates the mitochondrial apoptosis signaling pathway in human cancer cells. Oncology Letters, 2017, 13, 2607-2614.	0.8	15
108	Fabrication of membrane absorbers based on amphiphilic carbonaceous derivatives for selective endotoxin clearance. Journal of Materials Chemistry B, 2017, 5, 8219-8227.	2.9	12

#	Article	IF	CITATIONS
109	Volatiles of Callicarpa rubella. Chemistry of Natural Compounds, 2017, 53, 976-977.	0.2	4
110	Simultaneous determination of brazilin and protosappanin B in Caesalpinia sappan by ionic-liquid dispersive liquid-phase microextraction method combined with HPLC. Chemistry Central Journal, 2017, 114.	2.6	14
111	Volatiles in Stems and Leaves of Acacia confusa. Chemistry of Natural Compounds, 2017, 53, 1148-1149.	0.2	1
112	Volatiles from Stems and Leaves of Antidesma bunius by HS-SPME-GC-MS. Chemistry of Natural Compounds, 2017, 53, 1177-1178.	0.2	0
113	Antithrombotic mechanism of polysaccharides in Blackberry (<i>Rubus</i> spp.) seeds. Food and Nutrition Research, 2017, 61, 1379862.	1.2	23
114	Purification, characterization and procoagulant activity of polysaccharides from Angelica dahurice roots. Chemistry Central Journal, 2017, 11 , 17 .	2.6	25
115	Isolation, purification, structural analysis and coagulatory activity of water-soluble polysaccharides from Ligustrum lucidum Ait flowers. Chemistry Central Journal, 2017, 11, 98.	2.6	20
116	Spectrum Effect Relationship and Component Knock-Out in Angelica Dahurica Radix by High Performance Liquid Chromatography-Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer. Molecules, 2017, 22, 1231.	1.7	21
117	Antithrombotic Effect and Mechanism of Radix Paeoniae Rubra. BioMed Research International, 2017, 2017, 1-9.	0.9	56
118	Flavonoids in Different Parts of (i) Lysimachia clethroides (i) Duby Extracted by Ionic Liquid: Analysis by HPLC and Antioxidant Activity Assay. Journal of Chemistry, 2017, 2017, 1-10.	0.9	6
119	Analysis of Chemical Constituents Changing in Physical Process and Nutritional Components of <i>Malus halliana </i> Koehne Tea. Journal of Food Quality, 2017, 2017, 1-6.	1.4	10
120	Role of the cystathionine \hat{l}^2 -synthase/H2S system in liver cancer cells and the inhibitory effect of quinolone-indolone conjugate QIC2 on the system. Oncology Reports, 2017, 37, 3001-3009.	1.2	26
121	Cystathionine- \hat{I}^3 -lyase promotes process of breast cancer in association with STAT3 signaling pathway. Oncotarget, 2017, 8, 65677-65686.	0.8	44
122	Effects of Flavonoids in Lysimachia clethroides Duby on the Activities of Cytochrome P450 CYP2E1 and CYP3A4 in Rat Liver Microsomes. Molecules, 2016, 21, 738.	1.7	13
123	Analysis of tilianin and acacetin in Agastache rugosa by high-performance liquid chromatography with ionic liquids-ultrasound based extraction. Chemistry Central Journal, 2016, 10, 76.	2.6	30
124	miRNA-129-5p suppresses cell proliferation and invasion in lung cancer by targeting microspherule protein 1, E-cadherin and vimentin. Oncology Letters, 2016, 12, 5163-5169.	0.8	24
125	Identification of Volatile Organic Compounds in Leaves of Aconitum gymnandrum by HS-SPME-GC-MS. Chemistry of Natural Compounds, 2016, 52, 924-925.	0.2	0
126	Identification of Volatile Compounds of Elatostema duyunense by HS-SPME-GC-MS. Chemistry of Natural Compounds, 2016, 52, 928-929.	0.2	0

#	Article	IF	CITATIONS
127	Procoagulant Substance and Mechanism of <i>Myristica fragrans</i> . Journal of Medicinal Food, 2016, 19, 1065-1073.	0.8	9
128	Volatile Compounds from Leaves of Ixora hainanensis. Chemistry of Natural Compounds, 2016, 52, 1104-1105.	0.2	1
129	Volatile Components of Asparagus cochinchinensis Stems. Chemistry of Natural Compounds, 2016, 52, 1116-1117.	0.2	1
130	Chemical Constituents of Caragana sinica. Chemistry of Natural Compounds, 2016, 52, 1141-1142.	0.2	5
131	Chemical Constituents of Adina rubella. Chemistry of Natural Compounds, 2016, 52, 181-182.	0.2	1
132	Chemical Constituents of Haloxylon ammodendron. Chemistry of Natural Compounds, 2015, 51, 557-558.	0.2	2
133	Volatiles Of <i>Lysimachia Paridiformis</i> Var. <i>Stenophylla, Lysimachia Fortumei And Lysimachia Chikungensis</i> By Hs-Spme-Gc-Ms. Tropical Journal of Obstetrics and Gynaecology, 2014, 11, 70.	0.3	2
134	Volatiles from Flowers of Lagerstroemia caudata by HS-SPME-GC-MS. Chemistry of Natural Compounds, 2014, 50, 933-934.	0.2	9
135	α-Glucosidase inhibitors isolated from medicinal plants. Food Science and Human Wellness, 2014, 3, 136-174.	2.2	284
136	Volatiles in Potentilla discolor by HS-SPME-GC-MS. Chemistry of Natural Compounds, 2014, 50, 1128.	0.2	2
137	Study of Volatiles in Lysimachia parvifolia Flower Using HS-SPME-GC-MS. Chemistry of Natural Compounds, 2014, 50, 1130.	0.2	2
138	Volatiles from Acer oliverianum Leaves. Chemistry of Natural Compounds, 2014, 50, 931-932.	0.2	10
139	α-Glucosidase Inhibitory Compounds of Lycopus lucidus var. hirtus. Chemistry of Natural Compounds, 2014, 50, 169-171.	0.2	0
140	Composition of the volatiles of Yucca gloriosa flowers. Chemistry of Natural Compounds, 2013, 49, 537-538.	0.2	0
141	Analysis of volatiles in Belamcanda chinensis flowers by HS-SPME-GC-MS. Chemistry of Natural Compounds, 2013, 49, 152-153.	0.2	4
142	Volatiles in flowers of Viburnum odoratissimum. Chemistry of Natural Compounds, 2013, 49, 154-155.	0.2	4
143	Volatiles from flowers of Photinia serrulata by HS-SPME-GC-MS. Chemistry of Natural Compounds, 2013, 49, 354-355.	0.2	2
144	Aroma volatile compounds in Mussaenda pubescens. Chemistry of Natural Compounds, 2013, 49, 358-359.	0.2	1

#	Article	IF	CITATIONS
145	Analysis of volatiles in the male flower of Ilex cornuta by HS-SPME-GC-MS. Chemistry of Natural Compounds, 2013, 49, 367-368.	0.2	6
146	$\hat{l}\pm\text{-Glucosidase}$ inhibitory compounds from Aeschynanthus superbus. Chemistry of Natural Compounds, 2013, 49, 170-172.	0.2	1
147	α-Glucosidase inhibitory compounds from seeds of Cassia obtusifolia. Chemistry of Natural Compounds, 2012, 48, 465-466.	0.2	9
148	Inhibitory activity of Euphorbia humifusa for \hat{l}_{\pm} -glucosidase in vitro and in vivo. Chemistry of Natural Compounds, 2012, 48, 886-888.	0.2	11
149	Antioxidant and α-glucosidase inhibitory compounds from Pimpinella candolleana Wight et Arn Medicinal Chemistry Research, 2012, 21, 4324-4329.	1.1	11
150	A new carbamic acid from Dryopteris wallichiana. Chemistry of Natural Compounds, 2011, 47, 91-93.	0.2	7
151	Analysis of volatiles in the flowers of Patrinia scabiosifolia BY HS-SPME-GC-MS. Chemistry of Natural Compounds, 2011, 47, 101-102.	0.2	7
152	Composition of the essential oil of Lysimachia pentapetala flowers. Chemistry of Natural Compounds, 2011, 47, 452-453.	0.2	7
153	\hat{l}_{\pm} -Glucosidase inhibitory and antioxidant properties and antidiabetic activity of Hypericum ascyron L Medicinal Chemistry Research, 2011, 20, 809-816.	1.1	62
154	In vitro antioxidant properties and in vivo lowering blood lipid of Forsythia suspense leaves. Medicinal Chemistry Research, 2010, 19, 617-628.	1.1	45
155	Antioxidant phenolic compounds and flavonoids of Mitragyna rotundifolia (Roxb.) Kuntze in vitro. Medicinal Chemistry Research, 2010, 19, 1222-1232.	1.1	37
156	Sesquiterpenes and triterpenes from Aeschynanthus mengxinggensis. Chemistry of Natural Compounds, 2010, 46, 661-663.	0.2	4
157	A new xanthone from the roots of Securidaca inappendiculata. Chemical Papers, 2009, 63, .	1.0	6
158	Triterpenoid saponins from Mitragyna rotundifolia. Biochemical Systematics and Ecology, 2006, 34, 585-587.	0.6	16