Grażyna Wójcicka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3268142/publications.pdf Version: 2024-02-01

		430874	434195
31	1,216	18	31
papers	citations	h-index	g-index
32	32	32	1827
all docs	docs citations	times ranked	citing authors

ΟΡΛΔΙάνΝΑ ΜΑΞΙΟΙΟΚΑ

#	Article	IF	CITATIONS
1	Shotgun Lipidomic Analysis for Differentiation of Niche Cold Pressed Oils. Molecules, 2022, 27, 1848.	3.8	5
2	Paraoxonase 1 Phenotype and Protein N-Homocysteinylation in Patients with Rheumatoid Arthritis: Implications for Cardiovascular Disease. Antioxidants, 2020, 9, 899.	5.1	8
3	Cladribine Treatment Improved Homocysteine Metabolism and Increased Total Serum Antioxidant Activity in Secondary Progressive Multiple Sclerosis Patients. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-7.	4.0	5
4	The effect of exenatide (a GLP-1 analog) and sitagliptin (a DPP-4 inhibitor) on plasma platelet-activating factor acetylhydrolase (PAF-AH) activity and concentration in normal and fructose-fed rats. European Journal of Pharmacology, 2019, 850, 180-189.	3.5	6
5	Hydrogen sulfide in the regulation of insulin secretion and insulin sensitivity: Implications for the pathogenesis and treatment of diabetes mellitus. Biochemical Pharmacology, 2018, 149, 60-76.	4.4	67
6	Metabolic Effects of Metformin in the Failing Heart. International Journal of Molecular Sciences, 2018, 19, 2869.	4.1	61
7	The pathophysiological basis of the protective effects of metformin in heart failure. Postepy Higieny I Medycyny Doswiadczalnej, 2017, 71, 0-0.	0.1	7
8	The paraoxonase 1 (PON1), platelet-activating factor acetylohydrolase (PAF-AH) and dimethylarginine dimethylaminohydrolase (DDAH) activity in the metformin treated normal and diabetic rats. European Journal of Pharmacology, 2016, 789, 187-194.	3.5	9
9	Differential effects of statins on endogenous H2S formation in perivascular adipose tissue. Pharmacological Research, 2011, 63, 68-76.	7.1	85
10	Modulation of paraoxonase 1 and protein N-homocysteinylation by leptin and the synthetic liver X receptor agonist T0901317 in the rat. Journal of Endocrinology, 2010, 204, 191-198.	2.6	22
11	The differentiating effect of glimepiride and glibenclamide on paraoxonase 1 and platelet-activating factor acetylohydrolase activity. Life Sciences, 2010, 87, 126-132.	4.3	18
12	Chronic hyperleptinemia induces resistance to acute natriuretic and NO-mimetic effects of leptin. Peptides, 2010, 31, 155-163.	2.4	19
13	Adverse Effects of Statins - Mechanisms and Consequences. Current Drug Safety, 2009, 4, 209-228.	0.6	179
14	Resistance to acute NO-mimetic and EDHF-mimetic effects of leptin in the metabolic syndrome. Life Sciences, 2009, 85, 557-567.	4.3	26
15	Renal antioxidant enzymes and glutathione redox status in leptin-induced hypertension. Molecular and Cellular Biochemistry, 2008, 319, 163-174.	3.1	19
16	Transactivation of epidermal growth factor receptor in vascular and renal systems in rats with experimental hyperleptinemia: Role in leptin-induced hypertension. Biochemical Pharmacology, 2008, 75, 1623-1638.	4.4	24
17	Role of extracellular signal-regulated kinases (ERK) in leptin-induced hypertension. Life Sciences, 2008, 82, 402-412.	4.3	19
18	Regulation of Renal Ouabain-Resistant Na+-ATPase by Leptin, Nitric Oxide, Reactive Oxygen Species, and Cyclic Nucleotides: Implications for Obesity-Associated Hypertension. Clinical and Experimental Hypertension, 2007, 29, 189-207.	1.3	31

Grażyna Wójcicka

#	Article	IF	CITATIONS
19	Role of PI3K and PKB/Akt in acute natriuretic and NO-mimetic effects of leptin. Regulatory Peptides, 2007, 140, 168-177.	1.9	12
20	Liver X receptors (LXRs). Part I: structure, function, regulation of activity, and role in lipid metabolism. Postepy Higieny I Medycyny Doswiadczalnej, 2007, 61, 736-59.	0.1	94
21	Role of nitric oxide and endothelium-derived hyperpolarizing factor (EDHF) in the regulation of blood pressure by leptin in lean and obese rats. Life Sciences, 2006, 79, 63-71.	4.3	28
22	H2O2 and Src-dependent transactivation of the EGF receptor mediates the stimulatory effect of leptin on renal ERK and Na+, K+-ATPase. Peptides, 2006, 27, 3234-3244.	2.4	26
23	Antioxidant treatment normalizes nitric oxide production, renal sodium handling and blood pressure in experimental hyperleptinemia. Life Sciences, 2005, 77, 1855-1868.	4.3	19
24	Differential effect of antioxidant treatment on plasma and tissue paraoxonase activity in hyperleptinemic rats. Pharmacological Research, 2005, 51, 523-532.	7.1	37
25	Effect of 3-hydroxy-3-methylglutarylcoenzyme A Reductase Inhibitors (Statins) on Tissue Paraoxonase 1 and Plasma Platelet Activating Factor Acetylhydrolase Activities. Journal of Cardiovascular Pharmacology, 2004, 43, 121-127.	1.9	31
26	Influence of intravenously administered leptin on nitric oxide production, renal hemodynamics and renal function in the rat. Regulatory Peptides, 2004, 120, 59-67.	1.9	30
27	Oxidative stress, nitric oxide production, and renal sodium handling in leptin-induced hypertension. Life Sciences, 2004, 74, 2987-3000.	4.3	94
28	Bidirectional regulation of renal cortical Na+,K+-ATPase by protein kinase C Acta Biochimica Polonica, 2004, 51, 757-772.	0.5	19
29	Stimulatory Effect of Leptin on Nitric Oxide Production Is Impaired in Dietaryâ€Induced Obesity. Obesity, 2003, 11, 1571-1580.	4.0	16
30	Leptin decreases plasma paraoxonase 1 (PON1) activity and induces oxidative stress: the possible novel mechanism for proatherogenic effect of chronic hyperleptinemia. Atherosclerosis, 2003, 170, 21-29.	0.8	147
31	Human Leptin Stimulates Systemic Nitric Oxide Production in the Rat. Obesity, 2002, 10, 939-946.	4.0	53