
Agnieszka Pajdak-StÃ³s

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3268097/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Phormidium autumnale (Cyanobacteria) defense against three ciliate grazer species. Aquatic Microbial Ecology, 2001, 23, 237-244.	1.8	55
2	The role of Lecane rotifers in activated sludge bulking control. Water Research, 2008, 42, 2483-2490.	11.3	52
3	Seasonal changes in the body size of two rotifer species living in activated sludge follow the Temperatureâ€6ize Rule. Ecology and Evolution, 2014, 4, 4678-4689.	1.9	27
4	The use of rotifers for limiting filamentous bacteria Type 021N, a bacteria causing activated sludge bulking. Water Science and Technology, 2013, 67, 1557-1563.	2.5	25
5	The Influence of Temperature on the Effectiveness of Filamentous Bacteria Removal from Activated Sludge by Rotifers. Water Environment Research, 2012, 84, 619-625.	2.7	23
6	Substrate preference in settling zebra mussels Dreissena polymorpha. Archiv Für Hydrobiologie, 2004, 159, 263-270.	1.1	20
7	Dependence of cyanobacteria defense mode on grazer pressure. Aquatic Microbial Ecology, 2002, 27, 149-157.	1.8	18
8	Resistance of nitrifiers inhabiting activated sludge to ciliate grazing. Water Science and Technology, 2010, 61, 573-580.	2.5	17
9	Toxicity of Ammonia Nitrogen to Ciliated Protozoa Stentor coeruleus and Coleps hirtus Isolated from Activated Sludge of Wastewater Treatment Plants. Bulletin of Environmental Contamination and Toxicology, 2012, 89, 975-977.	2.7	16
10	Experimental Attempt at Using <i>Lecane inermis</i> Rotifers to Control Filamentous Bacteria Eikelboom Type 0092 in Activated Sludge. Water Environment Research, 2015, 87, 205-210.	2.7	16
11	Predator-induced morphological defence in ciliates: interclonal variation for sensitivity to the inducing factors. Oikos, 2003, 100, 534-540.	2.7	14
12	Foam-forming bacteria in activated sludge effectively reduced by rotifers in laboratory- and real-scale wastewater treatment plant experiments. Environmental Science and Pollution Research, 2017, 24, 13004-13011.	5.3	14
13	The effect of three different predatory ciliate species on activated sludge microfauna. European Journal of Protistology, 2017, 58, 87-93.	1.5	14
14	Dynamics of cyanobacteria–ciliate grazer activity in bitrophic and tritrophic microcosms. Aquatic Microbial Ecology, 2010, 59, 45-53.	1.8	13
15	Interaction Between a Bacterivorous Ciliate Aspidisca cicada and a Rotifer Lecane inermis: Doozers and Fraggles in Aquatic Flocs. Microbial Ecology, 2018, 75, 569-581.	2.8	12
16	Clonal variation in reproductive response to temperature by a potential bulking control agent, Lecane inermis (Rotifera). Water Science and Technology, 2011, 64, 403-408.	2.5	11
17	The Toxicity of Selected Trace Metals to Lecane inermis Rotifers Isolated from Activated Sludge. Bulletin of Environmental Contamination and Toxicology, 2013, 91, 330-333.	2.7	11
18	Can a predatory fungus (Zoophagus sp.) endanger the rotifer populations in activated sludge?. Fungal Ecology, 2016, 23, 75-78.	1.6	11

#	Article	IF	CITATIONS
19	Effect of the rotifer Lecane inermis, a potential sludge bulking control agent, on process parameters in a laboratory-scale SBR system. Water Science and Technology, 2013, 68, 2012-2018.	2.5	9
20	The Toxicity of Aluminium Salts to Lecane Inermis Rotifers: Are Chemical and Biological Methods Used to Overcome Activated Sludge Bulking Mutually Exclusive?. Archives of Environmental Protection, 2013, 39, 127-138.	1.1	8
21	Why is sex so rare in <i>Lecane inermis</i> (Rotifera: Monogononta) in wastewater treatment plants?. Invertebrate Biology, 2014, 133, 128-135.	0.9	8
22	Chemical and mechanical signals in inducingPhormidium(Cyanobacteria) defence against their grazers. FEMS Microbiology Ecology, 2014, 89, 659-669.	2.7	7
23	Multivariate analysis of activated sludge community in full-scale wastewater treatment plants. Environmental Science and Pollution Research, 2021, 28, 3579-3589.	5.3	7
24	<i>Lecane tenuiseta</i> (Rotifera, Monogononta) as the best biological tool candidate selected for preventing activated sludge bulking in a cold season. Desalination and Water Treatment, 2016, 57, 28592-28599.	1.0	6
25	VULNERABILITY OF <i>NOSTOC MUSCORUM</i> AGARDH (CYANOPHYCEAE) MOTILE HORMOGONIA TO CILIATE GRAZING ¹ . Journal of Phycology, 2004, 40, 271-274.	2.3	5
26	Effect of high levels of the rotifer Lecane inermis on the ciliate community in laboratory-scale sequencing batch bioreactors (SBRs). European Journal of Protistology, 2015, 51, 470-479.	1.5	5
27	Temperature-Dependence of Predator-Prey Dynamics in Interactions Between the Predatory Fungus Lecophagus sp. and Its Prey L. inermis Rotifers. Microbial Ecology, 2018, 75, 400-406.	2.8	5
28	Effects of grazers' species identity on cyanobacteria in bitrophic and tritrophic food webs. FEMS Microbiology Ecology, 2009, 68, 329-339.	2.7	4
29	Diversity and function of the microbial community under strong selective pressure of rotifers. Journal of Basic Microbiology, 2019, 59, 775-783.	3.3	4
30	The Relations Between Predatory Fungus and Its Rotifer Preys as a Noteworthy Example of Intraguild Predation (IGP). Microbial Ecology, 2020, 79, 73-83.	2.8	4
31	The effect of medium on selected life-history traits in three clones of Lecane inermis (Rotifera) from activated sludge. Water Science and Technology, 2011, 63, 2071-2076.	2.5	3
32	The influence of Aspidisca cicada Âon nitrifying bacteria and the morphology of flocs in activated sludge. Water and Environment Journal, 2020, 34, 699-709.	2.2	3
33	<i>Lecane tenuiseta</i> rotifers improves activated sludge settleability in laboratory scale SBR system at 13°C and 20°C. Water and Environment Journal, 2017, 31, 113-119.	2.2	2
34	Clonal thermal preferences affect the strength of the temperature-size rule. Organisms Diversity and Evolution, 2022, 22, 317-326.	1.6	2
35	Rotifers weaken the efficiency of the cyanobacterium defence against ciliate grazers. FEMS Microbiology Ecology, 2020, 96, .	2.7	1
36	Effects of polyaluminum chloride (PAX-18) on the relationship between predatory fungi and Lecane rotifers. Environmental Science and Pollution Research, 2022, 29, 17671-17681.	5.3	1