Rui Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3267879/publications.pdf

Version: 2024-02-01

22548 36203 11,693 182 61 101 citations h-index g-index papers 187 187 187 11506 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pegmatite magmatic evolution and rare metal mineralization of the Dahongliutan pegmatite field, Western Kunlun Orogen: Constraints from the B isotopic composition and mineral-chemistry. International Geology Review, 2023, 65, 1224-1242.	1.1	6
2	The Role of Surface Curvature in Electrocatalysts. Chemistry - A European Journal, 2022, 28, .	1.7	9
3	Visible light-driven carbon-carbon reductive coupling of aromatic ketones activated by Ni-doped CdS quantum dots: An insight into the mechanism. Applied Catalysis B: Environmental, 2022, 304, 120946.	10.8	15
4	Co porphyrin-based metal-organic framework for hydrogen evolution reaction and oxygen reduction reaction. Chinese Chemical Letters, 2022, 33, 3999-4002.	4.8	35
5	Introducing Waterâ€Networkâ€Assisted Proton Transfer for Boosted Electrocatalytic Hydrogen Evolution with Cobalt Corrole. Angewandte Chemie, 2022, 134, e202114310.	1.6	8
6	Introducing Waterâ€Networkâ€Assisted Proton Transfer for Boosted Electrocatalytic Hydrogen Evolution with Cobalt Corrole. Angewandte Chemie - International Edition, 2022, 61, e202114310.	7.2	46
7	Two-Dimensional Metal–Organic Frameworks with Unique Oriented Layers for Oxygen Reduction Reaction: Tailoring the Activity through Exposed Crystal Facets. CCS Chemistry, 2022, 4, 1633-1642.	4.6	13
8	Frontispiece: The Role of Surface Curvature in Electrocatalysts. Chemistry - A European Journal, 2022, 28, .	1.7	0
9	Tuning Electronic Structures of Covalent Co Porphyrin Polymers for Electrocatalytic CO ₂ Reduction in Aqueous Solutions. CCS Chemistry, 2022, 4, 2959-2967.	4.6	17
10	A heteroepitaxially grown two-dimensional metal–organic framework and its derivative for the electrocatalytic oxygen reduction reaction. Journal of Materials Chemistry A, 2022, 10, 10408-10416.	5. 2	13
11	Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions. Accounts of Chemical Research, 2022, 55, 878-892.	7.6	147
12	Rücktitelbild: Introducing Waterâ€Networkâ€Assisted Proton Transfer for Boosted Electrocatalytic Hydrogen Evolution with Cobalt Corrole (Angew. Chem. 9/2022). Angewandte Chemie, 2022, 134, .	1.6	1
13	Throughâ€Space Electrostatic Effects of Positively Charged Substituents on the Hydrogen Evolution Reaction. ChemSusChem, 2022, 15, .	3.6	21
14	A Hybrid Assembly with Nickel Polyâ€Pyridine Polymer on CdS Quantum Dots for Photoâ€Reducing CO ₂ into Syngas with Controlled H ₂ /CO Ratios. ChemSusChem, 2022, 15, .	3.6	10
15	Photochemically Enabled, Ni-Catalyzed Cyanation of Aryl Halides. Organic Letters, 2022, 24, 2271-2275.	2.4	15
16	Metalâ€Corroleâ€Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	54
17	Water Oxidation with Polymeric Photocatalysts. Chemical Reviews, 2022, 122, 5408-5410.	23.0	7
18	Metalâ€Corroleâ€Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie, 2022, 134, .	1.6	9

#	Article	IF	Citations
19	Black phosphorus incorporated cobalt oxide: Biomimetic channels for electrocatalytic water oxidation. Chinese Journal of Catalysis, 2022, 43, 1123-1130.	6.9	5
20	Geochemical and Sr–Nd–Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau: implications for Li mineralization. Contributions To Mineralogy and Petrology, 2022, 177, 1.	1.2	22
21	Fe Singleâ€atom Sites in Twoâ€Dimensional Nitrogenâ€doped Porous Carbon for Electrocatalytic Oxygen Reduction. ChemCatChem, 2022, 14, .	1.8	3
22	Cu, Fe Dualâ-'modified Ni3S2 nanosheets on nickel foam for bifunctional electrocatalytic water spitting. FlatChem, 2022, 33, 100368.	2.8	7
23	Electrocatalytic oxygen reduction reaction with metalloporphyrins. Scientia Sinica Chimica, 2022, 52, 1306-1320.	0.2	3
24	Throughâ€Space Electrostatic Effects of Positively Charged Substituents on the Hydrogen Evolution Reaction. ChemSusChem, 2022, 15, e202200774.	3.6	0
25	Ammonium cobalt phosphate with asymmetric coordination sites for enhanced electrocatalytic water oxidation. Chinese Journal of Catalysis, 2022, 43, 1955-1962.	6.9	7
26	Bioinspired iron porphyrins with appended poly-pyridine/amine units for boosted electrocatalytic CO2 reduction reaction. EScience, 2022, 2, 623-631.	25.0	23
27	Roleâ€Specialized Division of Labor in CO ₂ Reduction with Doublyâ€Functionalized Iron Porphyrin Atropisomers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
28	Inherent mass transfer engineering of a Co, N co-doped carbon material towards oxygen reduction reaction. Journal of Energy Chemistry, 2021, 58, 391-396.	7.1	12
29	Lightâ€Promoted C–N Coupling of Aryl Halides with Nitroarenes. Angewandte Chemie - International Edition, 2021, 60, 5230-5234.	7.2	75
30	Lightâ€Promoted C–N Coupling of Aryl Halides with Nitroarenes. Angewandte Chemie, 2021, 133, 5290-5294.	1.6	13
31	Nickel selenide from single-molecule electrodeposition for efficient electrocatalytic overall water splitting. New Journal of Chemistry, 2021, 45, 351-357.	1.4	20
32	Significantly boosted oxygen electrocatalysis with cooperation between cobalt and iron porphyrins. Dalton Transactions, 2021, 50, 5120-5123.	1.6	10
33	Transition metal-mediated O–O bond formation and activation in chemistry and biology. Chemical Society Reviews, 2021, 50, 4804-4811.	18.7	113
34	Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chemical Society Reviews, 2021, 50, 2540-2581.	18.7	249
35	Enzymeâ€Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie, 2021, 133, 7654-7659.	1.6	16
36	Cobalt porphyrins supported on carbon nanotubes as model catalysts of metal-N4/C sites for oxygen electrocatalysis. Journal of Energy Chemistry, 2021, 53, 77-81.	7.1	77

#	Article	IF	CITATIONS
37	Late Jurassic Intracontinental Extension and Related Mineralisation in Southwestern Fujian Province of SE China: Insights from Deformation and Syn-Tectonic Granites. Journal of Earth Science (Wuhan,) Tj ETQq $1\ 1\ 0$	D. 7.8 4314 i	rgBT /Overlo
38	Highly Efficient Catalytic Two-Electron Two-Proton Reduction of Dioxygen to Hydrogen Peroxide with a Cobalt Corrole Complex. ACS Catalysis, 2021, 11, 3073-3083.	5 . 5	41
39	Enzymeâ€Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie - International Edition, 2021, 60, 7576-7581.	7.2	164
40	Substituent position effect of Co porphyrin on oxygen electrocatalysis. Chinese Chemical Letters, 2021, 32, 2841-2845.	4.8	33
41	Metal–Organicâ€Frameworkâ€6upported Molecular Electrocatalysis for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 8472-8476.	7.2	153
42	Manganese(I)â€Catalyzed Siteâ€Selective C6â€Alkenylation of 2â€Pyridones Using Alkynes via Câ^'H Activation. Advanced Synthesis and Catalysis, 2021, 363, 2586-2593.	2.1	20
43	Metal–Organicâ€Frameworkâ€Supported Molecular Electrocatalysis for the Oxygen Reduction Reaction. Angewandte Chemie, 2021, 133, 8553-8557.	1.6	20
44	Controlling Oxygen Reduction Selectivity through Steric Effects: Electrocatalytic Twoâ€Electron and Fourâ€Electron Oxygen Reduction with Cobalt Porphyrin Atropisomers. Angewandte Chemie - International Edition, 2021, 60, 12742-12746.	7.2	85
45	Highly Curved Nanostructureâ€Coated Co, Nâ€Doped Carbon Materials for Oxygen Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 12759-12764.	7.2	120
46	Controlling Oxygen Reduction Selectivity through Steric Effects: Electrocatalytic Twoâ€Electron and Fourâ€Electron Oxygen Reduction with Cobalt Porphyrin Atropisomers. Angewandte Chemie, 2021, 133, 12852-12856.	1.6	7
47	Highly Curved Nanostructureâ€Coated Co, Nâ€Doped Carbon Materials for Oxygen Electrocatalysis. Angewandte Chemie, 2021, 133, 12869-12874.	1.6	19
48	Rücktitelbild: Controlling Oxygen Reduction Selectivity through Steric Effects: Electrocatalytic Twoâ€Electron and Fourâ€Electron Oxygen Reduction with Cobalt Porphyrin Atropisomers (Angew. Chem.) Tj ETC	Эф 060 0 rg	B ō /Overloc
49	Electropolymerization of cobalt porphyrins and corroles for the oxygen evolution reaction. Chinese Chemical Letters, 2021, 32, 3807-3810.	4.8	23
50	Anion engineering of hierarchical Co-A (AÂ=ÂO, Se, P) hexagrams for efficient electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2021, 32, 3241-3244.	4.8	16
51	Synergistic Electrocatalytic Hydrogen Evolution in Ni/NiS Nanoparticles Wrapped in Multi-Heteroatom-Doped Reduced Graphene Oxide Nanosheets. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34043-34052.	4.0	33
52	Switching the O–O bond-formation mechanism by controlling water activity. CheM, 2021, 7, 1981-1982.	5.8	6
53	Chiral Arylated Amines via Câ^'N Coupling of Chiral Amines with Aryl Bromides Promoted by Light. Angewandte Chemie - International Edition, 2021, 60, 21536-21542.	7.2	41
54	Chiral Arylated Amines via Câ^'N Coupling of Chiral Amines with Aryl Bromides Promoted by Light. Angewandte Chemie, 2021, 133, 21706-21712.	1.6	4

#	Article	IF	CITATIONS
55	O–O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts. Chinese Journal of Catalysis, 2021, 42, 1253-1268.	6.9	86
56	Alkali metal cation effects on electrocatalytic CO2 reduction with iron porphyrins. Chinese Journal of Catalysis, 2021, 42, 1439-1444.	6.9	30
57	Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coordination Chemistry Reviews, 2021, 442, 213996.	9.5	57
58	Identifying Intermediates in Electrocatalytic Water Oxidation with a Manganese Corrole Complex. Journal of the American Chemical Society, 2021, 143, 14613-14621.	6.6	77
59	Comparing electrocatalytic hydrogen and oxygen evolution activities of first-row transition metal complexes with similar coordination environments. Journal of Energy Chemistry, 2021, 63, 659-666.	7.1	40
60	An unusual network of \hat{l}_{\pm} -MnO2 nanowires with structure-induced hydrophilicity and conductivity for improved electrocatalysis. Chinese Journal of Catalysis, 2021, 42, 1724-1731.	6.9	11
61	Enhanced lithium storage performance guided by intricate-cavity hollow cobalt phosphide. Applied Surface Science, 2021, 563, 150395.	3.1	7
62	Boosting photoanodic activity for water splitting in carbon dots aqueous solution without any traditional supporting electrolyte. Applied Catalysis B: Environmental, 2021, 296, 120378.	10.8	10
63	Space-confined construction of two-dimensional nitrogen-doped carbon with encapsulated bimetallic nanoparticles as oxygen electrocatalysts. Chemical Communications, 2021, 57, 8190-8193.	2.2	12
64	Autologous manganese phosphates with different Mn sites for electrocatalytic water oxidation. Chemical Communications, 2021, 57, 6165-6168.	2,2	8
65	Improving Electrocatalytic Oxygen Reduction Activity and Selectivity with a Cobalt Corrole Appended with Multiple Positively Charged Proton Relay Sites. Journal of Physical Chemistry C, 2021, 125, 24805-24813.	1.5	23
66	Significantly improved electrocatalytic oxygen reduction by an asymmetrical Pacman dinuclear cobalt(<scp>ii</scp>) porphyrin–porphyrin dyad. Chemical Science, 2020, 11, 87-96.	3.7	65
67	Karst landform-featured monolithic electrode for water electrolysis in neutral media. Energy and Environmental Science, 2020, 13, 174-182.	15.6	109
68	Unexpected Effect of Intramolecular Phenolic Group on Electrocatalytic CO 2 Reduction. ChemCatChem, 2020, 12, 1591-1595.	1.8	23
69	Engineering Hierarchicalâ€Dimensional Co(OH)F into CoP Superstructure for Electrocatalytic Water Splitting. ChemCatChem, 2020, 12, 4770-4774.	1.8	13
70	Recent Progress on Defectâ€rich Transition Metal Oxides and Their Energyâ€Related Applications. Chemistry - an Asian Journal, 2020, 15, 3717-3736.	1.7	38
71	Acid Catalysis in Confined Channels of Metal–Organic Frameworks: Boosting Orthoformate Hydrolysis in Basic Solutions. Journal of the American Chemical Society, 2020, 142, 14848-14853.	6.6	31
72	Tunable confinement of Cu-Zn bimetallic oxides in carbon nanofiber networks by thermal diffusion for lithium-ion battery. Applied Surface Science, 2020, 517, 146079.	3.1	20

#	Article	IF	CITATIONS
73	First-row transition metal porphyrins for electrocatalytic hydrogen evolution â€" a SPP/JPP Young Investigator Award paper. Journal of Porphyrins and Phthalocyanines, 2020, 24, 1361-1371.	0.4	28
74	Recent advances in Co-based electrocatalysts for the oxygen reduction reaction. Sustainable Energy and Fuels, 2020, 4, 3848-3870.	2.5	38
75	Lightâ€Promoted Nickel Catalysis: Etherification of Aryl Electrophiles with Alcohols Catalyzed by a Ni II â€Aryl Complex. Angewandte Chemie, 2020, 132, 12814-12819.	1.6	19
76	Waterâ€Soluble Polymers with Appending Porphyrins as Bioinspired Catalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 15844-15848.	7.2	76
77	Waterâ€Soluble Polymers with Appending Porphyrins as Bioinspired Catalysts for the Hydrogen Evolution Reaction. Angewandte Chemie, 2020, 132, 15978-15982.	1.6	16
78	High-performance self-powered ultraviolet photodetectors based on mixed-dimensional heterostructure arrays formed from NiO nanosheets and TiO ₂ nanorods. Journal of Materials Chemistry C, 2020, 8, 9646-9654.	2.7	33
79	A yolk–shell structured metal–organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 9536-9544.	5.2	95
80	Homolytic versus Heterolytic Hydrogen Evolution Reaction Steered by a Steric Effect. Angewandte Chemie, 2020, 132, 9026-9031.	1.6	19
81	The Trans Axial Ligand Effect on Oxygen Reduction. Immobilization Method May Weaken Catalyst Design for Electrocatalytic Performance. Journal of Physical Chemistry C, 2020, 124, 16324-16331.	1.5	29
82	Autologous Cobalt Phosphates with Modulated Coordination Sites for Electrocatalytic Water Oxidation. Angewandte Chemie, 2020, 132, 9002-9006.	1.6	34
83	Autologous Cobalt Phosphates with Modulated Coordination Sites for Electrocatalytic Water Oxidation. Angewandte Chemie - International Edition, 2020, 59, 8917-8921.	7.2	89
84	Homolytic versus Heterolytic Hydrogen Evolution Reaction Steered by a Steric Effect. Angewandte Chemie - International Edition, 2020, 59, 8941-8946.	7.2	87
85	Lightâ€Promoted Nickel Catalysis: Etherification of Aryl Electrophiles with Alcohols Catalyzed by a Ni ^{ll} â€Aryl Complex. Angewandte Chemie - International Edition, 2020, 59, 12714-12719.	7.2	86
86	Novel Self-Powered Photodetector with Binary Photoswitching Based on SnS _{<i>x</i>} /TiO ₂ Heterojunctions. ACS Applied Materials & Amp; Interfaces, 2020, 12, 23145-23154.	4.0	38
87	Hollow Bimetallic Zinc Cobalt Phosphosulfides for Efficient Overall Water Splitting. Chemistry - A European Journal, 2019, 25, 621-626.	1.7	29
88	Underevaluated Solvent Effects in Electrocatalytic CO 2 Reduction by Fe III Chloride Tetrakis(pentafluorophenyl)porphyrin. Chemistry - A European Journal, 2019, 26, 4007.	1.7	28
89	Ultraâ€thin Coâ^Fe Layered Double Hydroxide Hollow Nanocubes for Efficient Electrocatalytic Water Oxidation. ChemPhysChem, 2019, 20, 2964-2967.	1.0	25
90	2D Metal–Organic Framework Derived CuCo Alloy Nanoparticles Encapsulated by Nitrogenâ€Doped Carbonaceous Nanoleaves for Efficient Bifunctional Oxygen Electrocatalyst and Zinc–Air Batteries. Chemistry - A European Journal, 2019, 25, 12780-12788.	1.7	38

#	Article	IF	CITATIONS
91	Molecular Engineering of a 3D Selfâ€Supported Electrode for Oxygen Electrocatalysis in Neutral Media. Angewandte Chemie - International Edition, 2019, 58, 18883-18887.	7.2	133
92	Molecular Engineering of a 3D Selfâ€Supported Electrode for Oxygen Electrocatalysis in Neutral Media. Angewandte Chemie, 2019, 131, 19059-19063.	1.6	21
93	Low overpotential water oxidation at neutral pH catalyzed by a copper(<scp>ii</scp>) porphyrin. Chemical Science, 2019, 10, 2613-2622.	3.7	150
94	NiFe Oxalate Nanomesh Array with Homogenous Doping of Fe for Electrocatalytic Water Oxidation. Small, 2019, 15, e1904579.	5.2	51
95	Electrocatalytic hydrogen evolution with gallium hydride and ligand-centered reduction. Chemical Science, 2019, 10, 2308-2314.	3.7	66
96	A New Strategy for Solarâ€toâ€Hydrogen Energy Conversion: Photothermalâ€Promoted Electrocatalytic Water Splitting. ChemElectroChem, 2019, 6, 2762-2765.	1.7	15
97	Hierarchicalâ€dimensional Material: A Co(OH) 2 Superstructure with Hybrid Dimensions for Enhanced Water Oxidation. ChemCatChem, 2019, 11, 5969-5975.	1.8	12
98	Importance of Electrocatalyst Morphology for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 2600-2614.	1.7	45
99	Attaching Cobalt Corroles onto Carbon Nanotubes: Verification of Four-Electron Oxygen Reduction by Mononuclear Cobalt Complexes with Significantly Improved Efficiency. ACS Catalysis, 2019, 9, 4551-4560.	5.5	96
100	Structure Effects of Metal Corroles on Energy-Related Small Molecule Activation Reactions. ACS Catalysis, 2019, 9, 4320-4344.	5.5	138
101	Controlled synthesis of hexagonal annular Mn(OH)F for water oxidation. Chinese Journal of Catalysis, 2019, 40, 1860-1866.	6.9	7
102	Boosting hydrogen evolution by using covalent frameworks of fluorinated cobalt porphyrins supported on carbon nanotubes. Chemical Communications, 2019, 55, 12647-12650.	2.2	48
103	A two-dimensional multi-shelled metal–organic framework and its derived bimetallic N-doped porous carbon for electrocatalytic oxygen reduction. Chemical Communications, 2019, 55, 14805-14808.	2.2	39
104	Convenient Immobilization of Cobalt Corroles on Carbon Nanotubes through Covalent Bonds for Electrocatalytic Hydrogen and Oxygen Evolution Reactions. ChemSusChem, 2019, 12, 801-806.	3.6	76
105	Hierarchical Znâ€Doped CoO Nanoflowers for Electrocatalytic Oxygen Evolution Reaction. ChemCatChem, 2019, 11, 1480-1486.	1.8	24
106	Manganese(<scp>ii</scp>) phosphate nanosheet assembly with native out-of-plane Mn centres for electrocatalytic water oxidation. Chemical Science, 2019, 10, 191-197.	3.7	44
107	Core-branch CoNi hydroxysulfides with versatilely regulated electronic and surface structures for superior oxygen evolution electrocatalysis. Journal of Energy Chemistry, 2019, 38, 8-14.	7.1	63
108	Dual Tuning of Ultrathin α-Co(OH) ₂ Nanosheets by Solvent Engineering and Coordination Competition for Efficient Oxygen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 3527-3535.	3.2	56

#	Article	IF	CITATIONS
109	A Nanosized CoNi Hydroxide@Hydroxysulfide Core–Shell Heterostructure for Enhanced Oxygen Evolution. Advanced Materials, 2019, 31, e1805658.	11.1	203
110	Hydrogen and Oxygen Evolution Reactions Catalyzed By Metal Porphyrins and Corroles. ECS Meeting Abstracts, 2019, , .	0.0	0
111	Mononuclear first-row transition-metal complexes as molecular catalysts for water oxidation. Chinese Journal of Catalysis, 2018, 39, 228-244.	6.9	62
112	Novel insight into the epitaxial growth mechanism of six-fold symmetrical \hat{I}^2 -Co(OH)2/Co(OH)F hierarchical hexagrams and their water oxidation activity. Electrochimica Acta, 2018, 271, 526-536.	2.6	42
113	Hollow Mesoporous Silica@Metal–Organic Framework and Applications for pHâ€Responsive Drug Delivery. ChemMedChem, 2018, 13, 400-405.	1.6	57
114	Selective visible-light-driven oxygen reduction to hydrogen peroxide using BODIPY photosensitizers. Chemical Communications, 2018, 54, 845-848.	2.2	25
115	Synthesis of Phenols: Organophotoredox/Nickel Dual Catalytic Hydroxylation of Aryl Halides with Water. Angewandte Chemie, 2018, 130, 1986-1990.	1.6	29
116	Ni ₂ P hollow microspheres for electrocatalytic oxygen evolution and reduction reactions. Catalysis Science and Technology, 2018, 8, 2289-2293.	2.1	42
117	Structures and single crystal to single crystal transformations of cadmium frameworks using a flexible tripodal ligand. New Journal of Chemistry, 2018, 42, 5593-5601.	1.4	4
118	Solarâ€toâ€Hydrogen Energy Conversion Based on Water Splitting. Advanced Energy Materials, 2018, 8, 1701620.	10.2	429
119	Co(OH) < sub > 2 < /sub > hollow nanoflowers as highly efficient electrocatalysts for oxygen evolution reaction. Journal of Materials Research, 2018, 33, 568-580.	1.2	22
120	Porous Materials as Highly Efficient Electrocatalysts for the Oxygen Evolution Reaction. ChemCatChem, 2018, 10, 1206-1220.	1.8	78
121	Synthesis of Phenols: Organophotoredox/Nickel Dual Catalytic Hydroxylation of Aryl Halides with Water. Angewandte Chemie - International Edition, 2018, 57, 1968-1972.	7.2	85
122	Recent advances in energy chemistry of precious-metal-free catalysts for oxygen electrocatalysis. Chinese Chemical Letters, 2018, 29, 1757-1767.	4.8	63
123	Carbon Nanotubes with Cobalt Corroles for Hydrogen and Oxygen Evolution in pHâ€0–14 Solutions. Angewandte Chemie - International Edition, 2018, 57, 15070-15075.	7.2	158
124	Conductive Molybdenum Sulfide for Efficient Electrocatalytic Hydrogen Evolution. Small, 2018, 14, e1803361.	5.2	73
125	Carbon Nanotubes with Cobalt Corroles for Hydrogen and Oxygen Evolution in pHâ€0–14 Solutions. Angewandte Chemie, 2018, 130, 15290-15295.	1.6	27
126	A protein@metal–organic framework nanocomposite for pH-triggered anticancer drug delivery. Dalton Transactions, 2018, 47, 10223-10228.	1.6	91

#	Article	IF	Citations
127	Quasi-single-crystalline CoO hexagrams with abundant defects for highly efficient electrocatalytic water oxidation. Chemical Science, 2018, 9, 6961-6968.	3.7	56
128	Cobalt–Nitrogenâ€Doped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2018, 130, 13371-13375.	1.6	19
129	Cobalt–Nitrogenâ€Doped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2018, 57, 13187-13191.	7.2	112
130	PVP-assisted transformation of a metal–organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts. Chemical Communications, 2018, 54, 7519-7522.	2.2	160
131	A Thin NiFe Hydroxide Film Formed by Stepwise Electrodeposition Strategy with Significantly Improved Catalytic Water Oxidation Efficiency. Advanced Energy Materials, 2017, 7, 1602547.	10.2	183
132	The effect of the trans axial ligand of cobalt corroles on water oxidation activity in neutral aqueous solutions. Physical Chemistry Chemical Physics, 2017, 19, 9755-9761.	1.3	69
133	Oxygen reduction catalyzed by a water-soluble binuclear copper(<scp>ii</scp>) complex from a neutral aqueous solution. Chemical Communications, 2017, 53, 3189-3192.	2.2	49
134	Electrosynthesis of NiP _x nanospheres for electrocatalytic hydrogen evolution from a neutral aqueous solution. Chemical Communications, 2017, 53, 5507-5510.	2.2	84
135	Phase-transfer synthesis of α-Co(OH)2 and its conversion to CoO for efficient electrocatalytic water oxidation. Science Bulletin, 2017, 62, 626-632.	4.3	54
136	Cobalt corroles with phosphonic acid pendants as catalysts for oxygen and hydrogen evolution from neutral aqueous solution. Chemical Communications, 2017, 53, 6195-6198.	2.2	110
137	An Electrodeposited NiSe for Electrocatalytic Hydrogen and Oxygen Evolution Reactions in Alkaline Solution. Electrochimica Acta, 2017, 224, 412-418.	2.6	130
138	Electrocatalytic Water Oxidation by a Water-Soluble Copper(II) Complex with a Copper-Bound Carbonate Group Acting as a Potential Proton Shuttle. Inorganic Chemistry, 2017, 56, 13368-13375.	1.9	81
139	PVP-assisted synthesis of porous CoO prisms with enhanced electrocatalytic oxygen evolution properties. Journal of Energy Chemistry, 2017, 26, 1210-1216.	7.1	26
140	Preparation of Cobaltâ€Based Electrodes by Physical Vapor Deposition on Various Nonconductive Substrates for Electrocatalytic Water Oxidation. ChemSusChem, 2017, 10, 4699-4703.	3.6	11
141	Electrocatalysis: Hierarchical Co(OH)F Superstructure Built by Lowâ€Dimensional Substructures for Electrocatalytic Water Oxidation (Adv. Mater. 28/2017). Advanced Materials, 2017, 29, .	11.1	0
142	Aligned cobalt-based Co@CoO _x nanostructures for efficient electrocatalytic water oxidation. Chemical Communications, 2017, 53, 9277-9280.	2.2	65
143	Facile synthesis of sponge-like Ni ₃ N/NC for electrocatalytic water oxidation. Chemical Communications, 2017, 53, 9566-9569.	2.2	62
144	Grapheneâ€Supported Pyreneâ€Modified Cobalt Corrole with Axial Triphenylphosphine for Enhanced Hydrogen Evolution in pHâ€0–14 Aqueous Solutions. ChemSusChem, 2017, 10, 4632-4641.	3.6	77

#	Article	IF	Citations
145	Pd–Ni nanoparticles supported on reduced graphene oxides as catalysts for hydrogen generation from hydrazine. RSC Advances, 2017, 7, 32310-32315.	1.7	18
146	Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. Chemical Reviews, 2017, 117, 3717-3797.	23.0	1,042
147	Surface Electrochemical Modification of a Nickel Substrate to Prepare a NiFeâ€based Electrode for Water Oxidation. ChemSusChem, 2017, 10, 394-400.	3.6	63
148	Hierarchical Co(OH)F Superstructure Built by Lowâ€Dimensional Substructures for Electrocatalytic Water Oxidation. Advanced Materials, 2017, 29, 1700286.	11,1	227
149	Singly versus Doubly Reduced Nickel Porphyrins for Proton Reduction: Experimental and Theoretical Evidence for a Homolytic Hydrogenâ€Evolution Reaction. Angewandte Chemie - International Edition, 2016, 55, 5457-5462.	7.2	148
150	A Waterâ€Soluble Copper–Polypyridine Complex as a Homogeneous Catalyst for both Photoâ€Induced and Electrocatalytic O ₂ Evolution. Chemistry - A European Journal, 2016, 22, 1602-1607.	1.7	70
151	Singly versus Doubly Reduced Nickel Porphyrins for Proton Reduction: Experimental and Theoretical Evidence for a Homolytic Hydrogenâ€Evolution Reaction. Angewandte Chemie, 2016, 128, 5547-5552.	1.6	30
152	Improvement of corrosion resistance and magnetic properties for sintered NdFeB by alumina sol-containing conversion film. RSC Advances, 2016, 6, 92510-92519.	1.7	5
153	Noncovalent Immobilization of a Pyrene-Modified Cobalt Corrole on Carbon Supports for Enhanced Electrocatalytic Oxygen Reduction and Oxygen Evolution in Aqueous Solutions. ACS Catalysis, 2016, 6, 6429-6437.	5.5	170
154	A homoleptic, all-alkynyl-stabilized highly luminescent Au ₈ Ag ₈ cluster with a single crystal X-ray structure. Dalton Transactions, 2016, 45, 12772-12778.	1.6	18
155	Ni ₃ versus Ni ₃₀ : A Truncated Octahedron Metal–Organic Cage Constructed with [Ni ₅ (CN) ₄] ⁶⁺ Squares and Tripodal Trisâ€tacn Ligands That are Large and Flexible. Chemistry - A European Journal, 2016, 22, 17576-17580.	1.7	6
156	Fe/Ni Metal–Organic Frameworks and Their Binder-Free Thin Films for Efficient Oxygen Evolution with Low Overpotential. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16736-16743.	4.0	198
157	A Nickelâ€Based Integrated Electrode from an Autologous Growth Strategy for Highly Efficient Water Oxidation. Advanced Energy Materials, 2016, 6, 1502489.	10.2	138
158	Stability analysis for networked control systems under denial-of-service attacks. , 2015, , .		18
159	Porous Nickel–Iron Oxide as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Advanced Science, 2015, 2, 1500199.	5.6	241
160	Water Splitting: Porous Nickel-Iron Oxide as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction (Adv. Sci. 10/2015). Advanced Science, 2015, 2, .	5.6	6
161	Cobalt Corrole on Carbon Nanotube as a Synergistic Catalyst for Oxygen Reduction Reaction in Acid Media. Electrochimica Acta, 2015, 171, 81-88.	2.6	64
162	Syntheses, structures and anion exchange properties of accommodative silver chains using a positively charged and flexible ligand. Inorganica Chimica Acta, 2015, 434, 158-171.	1.2	13

#	Article	IF	Citations
163	Fast and Simple Preparation of Ironâ∈Based Thin Films as Highly Efficient Waterâ∈Oxidation Catalysts in Neutral Aqueous Solution. Angewandte Chemie - International Edition, 2015, 54, 4870-4875.	7.2	256
164	Reactivity and Mechanism Studies of Hydrogen Evolution Catalyzed by Copper Corroles. ACS Catalysis, 2015, 5, 5145-5153.	5.5	164
165	Electrocatalytic Water Oxidation by a Water-Soluble Nickel Porphyrin Complex at Neutral pH with Low Overpotential. Inorganic Chemistry, 2015, 54, 5604-5613.	1.9	247
166	Phosphate monoester hydrolysis at tricopper site: The advantage and disadvantage of closely assembled trimetallic active sites. Journal of Molecular Catalysis A, 2015, 403, 43-51.	4.8	7
167	An Iron-based Film for Highly Efficient Electrocatalytic Oxygen Evolution from Neutral Aqueous Solution. ACS Applied Materials & Solution.	4.0	161
168	A Robust Microfluidic Device for the Synthesis and Crystal Growth of Organometallic Polymers with Highly Organized Structures. Angewandte Chemie - International Edition, 2015, 54, 1846-1850.	7.2	34
169	Cobalt porphyrin electrode films for electrocatalytic water oxidation. Physical Chemistry Chemical Physics, 2014, 16, 11224-11232.	1.3	58
170	Electrochemical, spectroscopic and theoretical studies of a simple bifunctional cobalt corrole catalyst for oxygen evolution and hydrogen production. Physical Chemistry Chemical Physics, 2014, 16, 1883-1893.	1.3	188
171	Structural, spectroscopic and theoretical studies of a vapochromic platinum(<scp>ii</scp>) terpyridyl complex. CrystEngComm, 2014, 16, 5531-5542.	1.3	35
172	Trinuclear zinc complexes for biologically relevant \hat{l} /43-oxoanion binding and carbon dioxide fixation. Nature Communications, 2013, 4, 2375.	5.8	36
173	Why Is Cobalt the Best Transition Metal in Transition-Metal Hangman Corroles for O–O Bond Formation during Water Oxidation?. Journal of Physical Chemistry Letters, 2012, 3, 2315-2319.	2.1	78
174	Catalytic water oxidation at single metal sites. Energy and Environmental Science, 2012, 5, 8134.	15.6	226
175	Naked-eye sensitive detection of nuclease activity using positively-charged gold nanoparticles as colorimetric probes. Chemical Communications, 2011, 47, 12301.	2.2	78
176	Immobilization, Trapping, and Anion Exchange of Perrhenate Ion Using Copper-Based Tripodal Complexes. Inorganic Chemistry, 2011, 50, 9499-9507.	1.9	55
177	Synthesis and biological evaluation of resveratrol analogues as anti-bacterial agents. , 2011, , .		0
178	Tripodal Tris-tacn and Tris-dpa Platforms for Assembling Phosphate-Templated Trimetallic Centers. Journal of the American Chemical Society, 2010, 132, 17366-17369.	6.6	51
179	Structural, Physicochemical, and Reactivity Properties of an All-Inorganic, Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation. Journal of the American Chemical Society, 2009, 131, 17360-17370.	6.6	162
180	Effects of lanthanum(III) on nitrogen metabolism of soybean seedlings under elevated UV-B radiation. Journal of Environmental Sciences, 2007, 19, 1361-1366.	3.2	22

#	Article	IF	CITATIONS
181	An Unusual O-O Bond Formation Route Results in Low Overpotential Water Oxidation at Neutral pH by a Cu ^{II} Catalyst. SSRN Electronic Journal, 0, , .	0.4	0
182	Roleâ€Specialized Division of Labor in CO2ÂReduction with Doublyâ€Functionalized Iron Porphyrin Atropisomers. Angewandte Chemie, 0, , .	1.6	1