Kristy M. Ainslie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3267341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heparan Sulfate Proteoglycan Is a Mechanosensor on Endothelial Cells. Circulation Research, 2003, 93, e136-42.	2.0	498
2	A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1–insensitive models of triple-negative breast cancer. JCI Insight, 2018, 3, .	2.3	175
3	A robust microparticle platform for a STINC-targeted adjuvant that enhances both humoral and cellular immunity during vaccination. Journal of Controlled Release, 2018, 270, 1-13.	4.8	119
4	In Vitro Analysis of Acetalated Dextran Microparticles as a Potent Delivery Platform for Vaccine Adjuvants. Molecular Pharmaceutics, 2010, 7, 826-835.	2.3	118
5	Acetalated Dextran: A Tunable and Acid-Labile Biopolymer with Facile Synthesis and a Range of Applications. Chemical Reviews, 2017, 117, 1915-1926.	23.0	113
6	Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. Lab on A Chip, 2008, 8, 1864.	3.1	105
7	<i>In vitro</i> inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. Journal of Biomedical Materials Research - Part A, 2009, 91A, 647-655.	2.1	90
8	Synthesis and Characterization of Acetalated Dextran Polymer and Microparticles with Ethanol as a Degradation Product. ACS Applied Materials & Interfaces, 2012, 4, 4149-4155.	4.0	78
9	Electrospray Encapsulation of Toll-Like Receptor Agonist Resiquimod in Polymer Microparticles for the Treatment of Visceral Leishmaniasis. Molecular Pharmaceutics, 2013, 10, 1045-1055.	2.3	72
10	A microparticle platform for STING-targeted immunotherapy enhances natural killer cell- and CD8+ T cell-mediated anti-tumor immunity. Biomaterials, 2019, 205, 94-105.	5.7	67
11	Acetalated Dextran Microparticles for Codelivery of STING and TLR7/8 Agonists. Molecular Pharmaceutics, 2018, 15, 4933-4946.	2.3	64
12	Vaccine formulations in clinical development for the prevention of severe acute respiratory syndrome coronavirus 2 infection. Advanced Drug Delivery Reviews, 2021, 169, 168-189.	6.6	62
13	Vascular smooth muscle cell glycocalyx influences shear stress-mediated contractile response. Journal of Applied Physiology, 2005, 98, 242-249.	1.2	61
14	Synthesis, Optimization, and Characterization of Camptothecin-Loaded Acetalated Dextran Porous Microparticles for Pulmonary Delivery. Molecular Pharmaceutics, 2012, 9, 290-298.	2.3	61
15	Tunable degradation of acetalated dextran microparticles enables controlled vaccine adjuvant and antigen delivery to modulate adaptive immune responses. Journal of Controlled Release, 2018, 273, 147-159.	4.8	61
16	Microfabricated Devices for Enhanced Bioadhesive Drug Delivery: Attachment to and Smallâ€Molecule Release Through a Cell Monolayer Under Flow. Small, 2009, 5, 2857-2863.	5.2	60
17	Treatment of Experimental Autoimmune Encephalomyelitis by Codelivery of Disease Associated Peptide and Dexamethasone in Acetalated Dextran Microparticles. Molecular Pharmaceutics, 2014, 11, 828-835.	2.3	57
18	PRMT5-Selective Inhibitors Suppress Inflammatory T Cell Responses and Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2017, 198, 1439-1451.	0.4	57

#	Article	IF	CITATIONS
19	Investigation of tunable acetalated dextran microparticle platform to optimize M2e-based influenza vaccine efficacy. Journal of Controlled Release, 2018, 289, 114-124.	4.8	57
20	Electrospray for generation of drug delivery and vaccine particles applied in vitro and in vivo. Materials Science and Engineering C, 2019, 105, 110070.	3.8	57
21	Optimization of rapamycin-loaded acetalated dextran microparticles for immunosuppression. International Journal of Pharmaceutics, 2012, 422, 356-363.	2.6	55
22	Microfabrication of an asymmetric, multi-layered microdevice for controlled release of orally delivered therapeutics. Lab on A Chip, 2008, 8, 1042.	3.1	53
23	<i>In vitro</i> Immunogenicity of Silicon-Based Micro- and Nanostructured Surfaces. ACS Nano, 2008, 2, 1076-1084.	7.3	53
24	Enhanced stability of horseradish peroxidase encapsulated in acetalated dextran microparticles stored outside cold chain conditions. International Journal of Pharmaceutics, 2012, 431, 101-110.	2.6	50
25	Efficient Delivery of the Toll-like Receptor Agonists Polyinosinic:Polycytidylic Acid and CpG to Macrophages by Acetalated Dextran Microparticles. Molecular Pharmaceutics, 2013, 10, 2849-2857.	2.3	48
26	Attenuation of Protein Adsorption on Static and Oscillating Magnetostrictive Nanowires. Nano Letters, 2005, 5, 1852-1856.	4.5	43
27	Acetalated Dextran Microparticulate Vaccine Formulated via Coaxial Electrospray Preserves Toxin Neutralization and Enhances Murine Survival Following Inhalational <i>Bacillus Anthracis</i> Exposure. Advanced Healthcare Materials, 2016, 5, 2617-2627.	3.9	42
28	Smooth muscle cells contract in response to fluid flow via a Ca ²⁺ -independent signaling mechanism. Journal of Applied Physiology, 2002, 93, 1907-1917.	1.2	40
29	Formation of Primary Amines on Silicon Nitride Surfaces:Â a Direct, Plasma-Based Pathway to Functionalization. Langmuir, 2007, 23, 4400-4404.	1.6	40
30	Micrometer-sized iron oxide particle labeling of mesenchymal stem cells for magnetic resonance imaging-based monitoring of cartilage tissue engineering. Magnetic Resonance Imaging, 2011, 29, 40-49.	1.0	39
31	Sustained Delivery of Doxorubicin via Acetalated Dextran Scaffold Prevents Glioblastoma Recurrence after Surgical Resection. Molecular Pharmaceutics, 2018, 15, 1309-1318.	2.3	38
32	Cell Adhesion on Nanofibrous Polytetrafluoroethylene (nPTFE). Langmuir, 2007, 23, 747-754.	1.6	37
33	Liposomal resiquimod for the treatment of Leishmania donovani infection. Journal of Antimicrobial Chemotherapy, 2014, 69, 168-175.	1.3	37
34	Degradation of acetalated dextran can be broadly tuned based on cyclic acetal coverage and molecular weight. International Journal of Pharmaceutics, 2016, 512, 147-157.	2.6	37
35	Considerations for Size, Surface Charge, Polymer Degradation, Coâ€Delivery, and Manufacturability in the Development of Polymeric Particle Vaccines for Infectious Diseases. Advanced NanoBiomed Research, 2021, 1, 2000041.	1.7	37
36	Protein Adhesion on Silicon-Supported Hyperbranched Poly(ethylene glycol) and Poly(allylamine) Thin Films. Langmuir, 2007, 23, 7018-7023.	1.6	35

#	Article	IF	CITATIONS
37	Tumor Responsive and Tunable Polymeric Platform for Optimized Delivery of Paclitaxel to Treat Glioblastoma. ACS Applied Materials & Interfaces, 2020, 12, 19345-19356.	4.0	32
38	Rapid Vaccination Using an Acetalated Dextran Microparticulate Subunit Vaccine Confers Protection Against Triplicate Challenge by Bacillus Anthracis. Pharmaceutical Research, 2013, 30, 1349-1361.	1.7	30
39	Electrospun Acetalated Dextran Scaffolds for Temporal Release of Therapeutics. Langmuir, 2013, 29, 7957-7965.	1.6	29
40	Acetalated dextran encapsulated AR-12 as a host-directed therapy to control Salmonella infection. International Journal of Pharmaceutics, 2014, 477, 334-343.	2.6	29
41	Intracellular Calcium Changes in Rat Aortic Smooth Muscle Cells in Response to Fluid Flow. Annals of Biomedical Engineering, 2002, 30, 371-378.	1.3	28
42	Synergistic drug combinations for a precision medicine approach to interstitial glioblastoma therapy. Journal of Controlled Release, 2020, 323, 282-292.	4.8	28
43	Glycolipid-mediated basophil activation in alpha-gal allergy. Journal of Allergy and Clinical Immunology, 2020, 146, 450-452.	1.5	27
44	One Step Encapsulation of Small Molecule Drugs in Liposomes via Electrospray-Remote Loading. Molecular Pharmaceutics, 2016, 13, 92-99.	2.3	26
45	Host-mediated Leishmania donovani treatment using AR-12 encapsulated in acetalated dextran microparticles. International Journal of Pharmaceutics, 2016, 499, 186-194.	2.6	24
46	Prevention of Type 1 Diabetes with Acetalated Dextran Microparticles Containing Rapamycin and Pancreatic Peptide P31. Advanced Healthcare Materials, 2018, 7, e1800341.	3.9	24
47	Identification of the effector domain of biglycan that facilitates BMP-2 osteogenic function. Scientific Reports, 2018, 8, 7022.	1.6	23
48	Delivery of host cell-directed therapeutics for intracellular pathogen clearance. Expert Review of Anti-Infective Therapy, 2013, 11, 1225-1235.	2.0	22
49	Evaluation of a biodegradable microparticulate polymer as a carrier for Burkholderia pseudomallei subunit vaccines in a mouse model of melioidosis. International Journal of Pharmaceutics, 2015, 495, 849-861.	2.6	22
50	Chemically modified inulin microparticles serving dual function as a protein antigen delivery vehicle and immunostimulatory adjuvant. Biomaterials Science, 2016, 4, 483-493.	2.6	22
51	Electrosprayed Myocet-like Liposomes: An Alternative to Traditional Liposome Production. Pharmaceutical Research, 2017, 34, 419-426.	1.7	22
52	A Novel Sterol Isolated from a Plant Used by Mayan Traditional Healers Is Effective in Treatment of Visceral Leishmaniasis Caused by <i>Leishmania donovani</i> . ACS Infectious Diseases, 2015, 1, 497-506.	1.8	18
53	Needle-Free Delivery of Acetalated Dextran-Encapsulated AR-12 Protects Mice from Francisella tularensis Lethal Challenge. Antimicrobial Agents and Chemotherapy, 2016, 60, 2052-2062.	1.4	18
54	Coâ€Delivery of Disease Associated Peptide and Rapamycin via Acetalated Dextran Microparticles for Treatment of Multiple Sclerosis. Advanced Biology, 2017, 1, 1700022.	3.0	18

#	Article	IF	CITATIONS
55	Drug Delivery for Cancer Immunotherapy and Vaccines. Pharmaceutical Nanotechnology, 2019, 6, 232-244.	0.6	18
56	STING Agonist Mitigates Experimental Autoimmune Encephalomyelitis by Stimulating Type I IFN–Dependent and –Independent Immune-Regulatory Pathways. Journal of Immunology, 2021, 206, 2015-2028.	0.4	18
57	Historical Perspective of Clinical Nano and Microparticle Formulations for Delivery of Therapeutics. Trends in Molecular Medicine, 2021, 27, 516-519.	3.5	17
58	Design of Biopolymer-Based Interstitial Therapies for the Treatment of Glioblastoma. International Journal of Molecular Sciences, 2021, 22, 13160.	1.8	17
59	In Vivo and Cellular Trafficking of Acetalated Dextran Microparticles for Delivery of a Host-Directed Therapy for <i>Salmonella enterica</i> Serovar Typhi Infection. Molecular Pharmaceutics, 2018, 15, 5336-5348.	2.3	16
60	Metal–Organic Coordination Polymer for Delivery of a Subunit Broadly Acting Influenza Vaccine. ACS Applied Materials & Interfaces, 2022, 14, 28548-28558.	4.0	15
61	Polymeric Biomaterial Scaffolds for Tumoricidal Stem Cell Glioblastoma Therapy. ACS Biomaterials Science and Engineering, 2020, 6, 3762-3777.	2.6	14
62	Nano- and Microformulations to Advance Therapies for Visceral Leishmaniasis. ACS Biomaterials Science and Engineering, 2021, 7, 1725-1741.	2.6	14
63	STING agonist-containing microparticles improve seasonal influenza vaccine efficacy and durability in ferrets over standard adjuvant. Journal of Controlled Release, 2022, 347, 356-368.	4.8	13
64	Saquinavir Loaded Acetalated Dextran Microconfetti – a Long Acting Protease Inhibitor Injectable. Pharmaceutical Research, 2016, 33, 1998-2009.	1.7	12
65	Evaluation of synergy between host and pathogen-directed therapies against intracellular Leishmania donovani. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 10, 125-132.	1.4	12
66	Formulation of host-targeted therapeutics against bacterial infections. Translational Research, 2020, 220, 98-113.	2.2	11
67	Merozoite surface protein 2 adsorbed onto acetalated dextran microparticles for malaria vaccination. International Journal of Pharmaceutics, 2021, 593, 120168.	2.6	11
68	Utilizing a Quartz Crystal Microbalance for Quantifying CD4 ⁺ T Cell Counts. Sensor Letters, 2005, 3, 211-215.	0.4	11
69	Vaccines for the Prevention of Melioidosis and Glanders. Current Tropical Medicine Reports, 2017, 4, 136-145.	1.6	10
70	Injectable, Ribbon-Like Microconfetti Biopolymer Platform for Vaccine Applications. ACS Applied Materials & Interfaces, 2020, 12, 38950-38961.	4.0	10
71	Macrophage cell adhesion and inflammation cytokines on magnetostrictive nanowires. Nanotoxicology, 2007, 1, 279-290.	1.6	8
72	Oxidation-Sensitive Dextran-Based Polymer with Improved Processability through Stable Boronic Ester Groups. ACS Applied Bio Materials, 2019, 2, 3755-3762.	2.3	8

#	Article	IF	CITATIONS
73	Flexible, microstructured surfaces using chitin-derived biopolymers. Journal of Materials Chemistry B, 2019, 7, 5328-5335.	2.9	8
74	Impact of composite scaffold degradation rate on neural stem cell persistence in the glioblastoma surgical resection cavity. Materials Science and Engineering C, 2020, 111, 110846.	3.8	8
75	Dexamethasone and Fumaric Acid Ester Conjugate Synergistically Inhibits Inflammation and NF-κB in Macrophages. Bioconjugate Chemistry, 2021, 32, 1629-1640.	1.8	8
76	Inflammatory Response to Implanted Nanostructured Materials. , 2009, , 355-371.		8
77	Development of an Intranasal Gel for the Delivery of a Broadly Acting Subunit Influenza Vaccine. ACS Biomaterials Science and Engineering, 2022, 8, 1573-1582.	2.6	8
78	Multiplexed electrospray enables high throughput production of cGAMP microparticles to serve as an adjuvant for a broadly acting influenza vaccine. International Journal of Pharmaceutics, 2022, 622, 121839.	2.6	8
79	Rat Aortic Smooth Muscle Cells Contract in Response to Serum and Its Components in a Calcium Independent Manner. Annals of Biomedical Engineering, 2004, 32, 1667-1675.	1.3	7
80	Injectable long-acting human immunodeficiency virus antiretroviral prodrugs with improved pharmacokinetic profiles. International Journal of Pharmaceutics, 2018, 552, 371-377.	2.6	7
81	Microparticles formulated from a family of novel silylated polysaccharides demonstrate inherent immunostimulatory properties and tunable hydrolytic degradability. Journal of Materials Chemistry B, 2016, 4, 4302-4312.	2.9	5
82	Micro- and Nano-particulate Strategies for Antigen Specific Immune Tolerance to Treat Autoimmune Diseases. Pharmaceutical Nanotechnology, 2015, 3, 85-100.	0.6	5
83	Nano/microparticle Formulations for Universal Influenza Vaccines. AAPS Journal, 2022, 24, 24.	2.2	4
84	Microtechnologies for Drug Delivery. , 2012, , 359-381.		3
85	Abstract LB-126: Nanoparticle-incorporated STING activator as an immunotherapeutic for PD-L1 resistant triple-negative breast cancer. Cancer Research, 2018, 78, LB-126-LB-126.	0.4	2
86	Attenuation of Protein Adsorption on Static and Vibrating Magnetic Nanowires. Materials Research Society Symposia Proceedings, 2005, 877, 1.	0.1	1
87	Overcoming reduced antibiotic susceptibility in intracellular <i>Salmonella enterica</i> serovar Typhimurium using AR-12. FEMS Microbiology Letters, 2021, 368, .	0.7	1
88	Delivery strategies for cancer vaccines and immunoadjuvants. , 2022, , 359-408.		1
89	Drug Delivery Strategies for Tolerogenic Therapy for Autoimmune Diseases in an Antigen-Specific Manner. , 2019, , 112-140.		0
90	Drug Delivery Strategies for Tolerogenic Therapy for Autoimmune Diseases in an Antigen-Specific Manner. Advances in Medical Technologies and Clinical Practice Book Series, 0, , 23-51.	0.3	0

#	Article	IF	CITATIONS
91	The AAPS Journal Theme Issue: Rising Stars in Drug Delivery and Novel Carriers. AAPS Journal, 2022, 24, 51.	2.2	0