Chun-Rui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/326727/publications.pdf

Version: 2024-02-01

54 papers

709 citations

16 h-index 24 g-index

54 all docs

54 docs citations

times ranked

54

878 citing authors

#	Article	IF	CITATIONS
1	ZnSe-Si Bi-coaxial Nanowire Heterostructures. Advanced Functional Materials, 2005, 15, 1471-1477.	14.9	67
2	Recent progress in Li-ion batteries with TiO2 nanotube anodes grown by electrochemical anodization. Rare Metals, 2021, 40, 249-271.	7.1	45
3	One-step aqueous solution synthesis of Ge nanocrystals from GeO2 powders. CrystEngComm, 2011, 13, 3674.	2.6	37
4	Synthesis of novel SbSI nanorods by a hydrothermal method. Inorganic Chemistry Communication, 2001, 4, 339-341.	3.9	34
5	Tuning Thermal Catalytic Enhancement in Doped MnO ₂ –Au Nano-Heterojunctions. ACS Applied Materials & Doped MnO ₂ –Au Nano-Heterojunctions. ACS Applied Materials & Doped MnO _{8.00 Applied Materials & Doped MnO_{9.00 Applied Materials & Doped MnO_{9.00 Applied Materials & Doped MnO_{9.00 Applied MnO_{9.00 A}}}}}</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	8.0	32
6	In Situ Atom Scale Visualization of Domain Wall Dynamics in VO2 Insulator-Metal Phase Transition. Scientific Reports, 2014, 4, 6544.	3.3	31
7	Investigating the effect of MnO ₂ band gap in hybrid MnO ₂ –Au materials over the SPR-mediated activities under visible light. Journal of Materials Chemistry A, 2019, 7, 925-931.	10.3	26
8	Enhanced performance of lithium ion batteries from self-doped TiO2 nanotube anodes via an adjustable electrochemical process. Electrochimica Acta, 2019, 326, 134972.	5.2	25
9	CdS nanobelt-based self-powered flexible photodetectors with high photosensitivity. Materials Advances, 2021, 2, 6031-6038.	5.4	25
10	Fabrication of ZnO/CdS/Cu ₂ ZnSnS ₄ p–n heterostructure nanorod arrays via a solution-based route. CrystEngComm, 2013, 15, 1139-1145.	2.6	24
11	SbSI whisker/PbI ₂ flake mixed-dimensional van der Waals heterostructure for photodetection. CrystEngComm, 2019, 21, 3779-3787.	2.6	24
12	High-performance multi-dimensional nitrogen-doped N+MnO2@TiC/C electrodes for supercapacitors. Electrochimica Acta, 2021, 370, 137716.	5.2	24
13	Needle-like CoO nanowire composites with NiO nanosheets on carbon cloth for hybrid flexible supercapacitors and overall water splitting electrodes. RSC Advances, 2020, 10, 37489-37499.	3 . 6	23
14	Structural, vibrational and luminescence properties of longitudinal twinning Zn ₂ GeO ₄ nanowires. CrystEngComm, 2013, 15, 764-768.	2.6	19
15	ZnSeâ€Based Longitudinal Twinning Nanowires. Advanced Engineering Materials, 2014, 16, 459-465.	3.5	18
16	Characterization of PbSnS3 Nanorods Prepared via an Iodine Transport Hydrothermal Method. Journal of Solid State Chemistry, 2001, 160, 50-53.	2.9	17
17	Designing of carbon cloth @ Co-MOF @ SiO2 as superior flexible anode for lithium-ion battery. Journal of Alloys and Compounds, 2022, 902, 163680.	5 . 5	17
18	Self-powered UV-visible photodetector with fast response and high photosensitivity employing an Fe:TiO ₂ /n-Si heterojunction. RSC Advances, 2017, 7, 51744-51749.	3.6	16

#	Article	IF	Citations
19	The effect of Argon pressure dependent V thin film on the phase transition process of (020) VO2 thin film. Applied Surface Science, 2018, 427, 304-311.	6.1	15
20	Raman, Far Infrared, and Mössbauer Spectroscopy of CuFeS ₂ Nanocrystallites. Japanese Journal of Applied Physics, 2009, 48, 023003.	1.5	14
21	Millimeter-sized Pbl ₂ flakes and Pb ₅ S ₂ I ₆ nanowires for flexible photodetectors. Journal of Materials Chemistry C, 2018, 6, 7188-7194.	5.5	13
22	Different temperature dependence of excitonic and defect-related photoluminescence spectra in ZnS nanobelts and nanowires. Journal Physics D: Applied Physics, 2012, 45, 095301.	2.8	12
23	Flexible Photodetectors with High Responsivity and Broad Spectral Response Employing Ternary Sn _{<i>x</i>} Cd _{1â€"<i>x</i>} S Micronanostructures. ACS Applied Electronic Materials, 2021, 3, 4151-4161.	4.3	12
24	High-Performance and Broadband Flexible Photodetectors Employing Multicomponent Alloyed 1D CdS _{<i>x</i>} Se _{1–<i>x</i>} Micro-Nanostructures. ACS Applied Materials & Interfaces, 2022, 14, 19659-19671.	8.0	12
25	Synthesis and vibrating properties ZnSe/Ge bi-axial heterostructural nanowires. Chemical Physics Letters, 2011, 501, 491-495.	2.6	11
26	Growth, structural and vibrating properties of CdSe–Ge, CdSe–Ge–CdSe, CdSe–Ge/Ge, Ge–GeSe heterostructure nanowires and GeSe nanobelts. CrystEngComm, 2011, 13, 2734.	2.6	10
27	SbSI microrod based flexible photodetectors. Journal Physics D: Applied Physics, 2020, 53, 345106.	2.8	10
28	NiFeP nanoflakes composite with CoP on carbon cloth as flexible and durable electrocatalyst for efficient overall water splitting. Nanotechnology, 2019, 30, 485402.	2.6	9
29	Construction of α-MnO2 on Carbon Fibers Modified with Carbon Nanotubes for Ultrafast Flexible Supercapacitors in Ionic Liquid Electrolytes with Wide Voltage Windows. Nanomaterials, 2022, 12, 2020.	4.1	9
30	Efficient coupling of MnO ₂ /TiN on carbon cloth positive electrode and Fe ₂ O ₃ /TiN on carbon cloth negative electrode for flexible ultra-fast hybrid supercapacitors. RSC Advances, 2021, 11, 35726-35736.	3.6	8
31	Growth of Pb5S2I6 meso-scale tubular crystals. Journal of Crystal Growth, 2001, 226, 175-178.	1.5	7
32	Fabrication and characterization of amorphous ITO/p-Si heterojunction solar cell. Science China Technological Sciences, 2013, 56, 1870-1876.	4.0	7
33	Micro-nano scale imaging and the effect of annealing on the perpendicular structure of electrical-induced VO2 phase transition. Applied Surface Science, 2019, 470, 168-176.	6.1	7
34	Formation of Ge Nanosheets Decorated Hierarchical ZnSe/GeSe Nanowire Heterostructures. Japanese Journal of Applied Physics, 2010, 49, 025001.	1.5	6
35	Facile Hydrothermal Synthesis of SnO ₂ Nanoparticles with Enhanced Lithium Storage Performance. Chemistry Letters, 2017, 46, 1639-1642.	1.3	6
36	Quantum transport of planar Josephson junctions with Majorana bound states. Physical Review B, 2020, 102, .	3.2	6

#	Article	IF	CITATIONS
37	Enhanced Spontaneous Antibacterial Activity of $\hat{\Gamma}$ -MnO2 by Alkali Metals Doping. Frontiers in Bioengineering and Biotechnology, 2021, 9, 788574.	4.1	6
38	Structure and Luminescence Properties of CdS Nanobelts. Japanese Journal of Applied Physics, 2004, 43, 7798-7801.	1.5	5
39	The synthesis and characterization of Pb5S2I6 whiskers and tubules. Inorganic Chemistry Communication, 2003, 6, 670-674.	3.9	4
40	Hierarchical Cd4SiS6/SiO2 Heterostructure Nanowire Arrays. Nanoscale Research Letters, 2010, 5, 231-6.	5.7	3
41	Synthesis and characteristics of p-type CdS nanobelts. Materials Research Express, 2017, 4, 115013.	1.6	3
42	Evaluation of the Titanium Substrate Effect on the Morphology of Anodic TiO ₂ Nanotubes. ECS Journal of Solid State Science and Technology, 2021, 10, 083008.	1.8	2
43	Growth of Amorphous SiO2 Net-Like Nanobelts via a Simple Thermal Evaporation of CdS Powder~!2008-08-27~!2008-10-01~!2008-11-26~!. The Open Nanoscience Journal, 2008, 2, 43-46.	1.8	2
44	Random-resistor network modeling of resistance hysteresis of vanadium dioxide thin films. Journal of Applied Physics, 2022, 132, 015301.	2.5	2
45	Quantum interference of Josephson current in topological Anderson insulator junctions. Journal of Physics Condensed Matter, 2019, 31, 285301.	1.8	1
46	Magnetic and Electronic Properties of Gd-Doped Ga <i>_n</i> N <i>_n</i> (<i>n</i> = 6â€"12) Clusters: First-Principles Study. Journal of Nanoscience and Nanotechnology, 2016, 16, 8096-8100.	0.9	1
47	Theoretical investigation of the scanning tunneling microscopy of Majorana bound states in topological superconductor vortices. Journal of Physics Condensed Matter, 2021, 33, 025301.	1.8	1
48	Abnormal SPR-Mediated Photocatalytic Enhancement of Ag Nanocubes Covered by AgCl Ultra-thin Layer. Plasmonics, 2022, 17, 1783-1790.	3.4	1
49	Strain distribution and Raman spectroscopy in individual Ge/CdSe biaxial nanowires. Japanese Journal of Applied Physics, 2015, 54, 025001.	1.5	0
50	Magnetic Phase Transition of Gadolinium Depending on Interatomic Distance. Journal of Nanoscience and Nanotechnology, 2016, 16, 8113-8117.	0.9	0
51	The Novel of <i>n–p–n</i> Type Transition in the ZnSe/Ge Heterojunction Nanowire: First Principles Study. Journal of Nanoscience and Nanotechnology, 2019, 19, 5847-5853.	0.9	0
52	Bending effect on the Majorana bound states in planar Josephson junctions. Journal of Physics Condensed Matter, 2021, 33, 385001.	1.8	0
53	Bipolar resistive switching in Ag/VO ₂ (B)/SiO _x /n ⁺⁺ Si RRAM. Materials Research Express, 2022, 9, 035003.	1.6	0
54	Effect of off-stoichiometry on the thermal conductivity of amorphous GeTe. Physica Scripta, 2021, 96, 125730.	2.5	0