
Harri Mäkinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3267231/publications.pdf Version: 2024-02-01

HADDI MÃØINEN

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	A synthesis of radial growth patterns preceding tree mortality. Global Change Biology, 2017, 23, 1675-1690.	9.5	394
3	Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants, 2015, 1, 15160.	9.3	294
4	Low growth resilience to drought is related to future mortality risk in trees. Nature Communications, 2020, 11, 545.	12.8	228
5	Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. Forest Ecology and Management, 2002, 171, 243-259.	3.2	193
6	PREDICTING THE DECOMPOSITION OF SCOTS PINE, NORWAY SPRUCE, AND BIRCH STEMS IN FINLAND. , 2006, 16, 1865-1879.		174
7	Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Global Change Biology, 2016, 22, 3804-3813.	9.5	174
8	Thinning intensity and growth of Scots pine stands in Finland. Forest Ecology and Management, 2004, 201, 311-325.	3.2	169
9	Thinning intensity and growth of Norway spruce stands in Finland. Forestry, 2004, 77, 349-364.	2.3	142
10	Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth. Frontiers in Plant Science, 2018, 9, 1964.	3.6	117
11	Seasonal changes in stem radius and production of new tracheids in Norway spruce. Tree Physiology, 2003, 23, 959-968.	3.1	115
12	Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. European Journal of Forest Research, 2008, 127, 235-245.	2.5	113
13	Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20645-20652.	7.1	113
14	Wood-density variation of Norway spruce in relation to nutrient optimization and fibre dimensions. Canadian Journal of Forest Research, 2002, 32, 185-194.	1.7	105
15	A physiological model of softwood cambial growth. Tree Physiology, 2010, 30, 1235-1252.	3.1	96
16	Thinning intensity and long-term changes in increment and stem form of Norway spruce trees. Forest Ecology and Management, 2004, 201, 295-309.	3.2	95
17	Predicting branch angle and branch diameter of Scots pine from usual tree measurements and stand structural information. Canadian Journal of Forest Research, 1998, 28, 1686-1696.	1.7	94
18	Climatic signal in annual growth variation of Norway spruce (<i>Picea abies</i>) along a transect from central Finland to the Arctic timberline. Canadian Journal of Forest Research, 2000, 30, 769-777.	1.7	91

#	Article	IF	CITATIONS
19	<scp>CASSIA</scp> – a dynamic model for predicting intraâ€annual sink demand and interannual growth variation in <scp>S</scp> cots pine. New Phytologist, 2015, 206, 647-659.	7.3	91
20	Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce [Picea abies (L.) Karst.] in southern Finland. Trees - Structure and Function, 2001, 15, 177-185.	1.9	89
21	Separating waterâ€potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. Plant, Cell and Environment, 2016, 39, 233-244.	5.7	79
22	Intra-annual tracheid production of Norway spruce and Scots pine across a latitudinal gradient in Finland. Agricultural and Forest Meteorology, 2014, 194, 241-254.	4.8	76
23	Large-scale climatic variability and radial increment variation of Picea abies (L.) Karst. in central and northern Europe. Trees - Structure and Function, 2003, 17, 173-184.	1.9	74
24	Chilling and forcing temperatures interact to predict the onset of wood formation in Northern Hemisphere conifers. Global Change Biology, 2019, 25, 1089-1105.	9.5	72
25	Wood density within Norway spruce stems. Silva Fennica, 2008, 42, .	1.3	72
26	The effect of artificially induced drought on radial increment and wood properties of Norway spruce. Tree Physiology, 2010, 30, 103-115.	3.1	71
27	Wood density in Norway spruce: changes with thinning intensity and tree age. Canadian Journal of Forest Research, 2005, 35, 1767-1778.	1.7	70
28	Predicting the number, death, and self-pruning of branches in Scots pine. Canadian Journal of Forest Research, 1999, 29, 1225-1236.	1.7	68
29	Environment-induced growth changes in the Finnish forests during 1971–2010 – An analysis based on National Forest Inventory. Forest Ecology and Management, 2017, 386, 22-36.	3.2	66
30	Effect of Growth Rate on Fibre Characteristics in Norway Spruce (Picea abies (L.) Karst.). Holzforschung, 2002, 56, 449-460.	1.9	65
31	Effect of wide spacing on increment and branch properties of young Norway spruce. European Journal of Forest Research, 2006, 125, 239-248.	2.5	65
32	Predicting wood and tracheid properties of Norway spruce. Forest Ecology and Management, 2007, 241, 175-188.	3.2	63
33	Generating 3D sawlogs with a process-based growth model. Forest Ecology and Management, 2003, 184, 337-354.	3.2	60
34	Thinning intensity and long-term changes in increment and stem form of Scots pine trees. Forest Ecology and Management, 2004, 203, 21-34.	3.2	56
35	Growth, suppression, death, and self-pruning of branches of Scots pine in southern and central Finland. Canadian Journal of Forest Research, 1999, 29, 585-594.	1.7	50
36	Predicting branch characteristics of Norway spruce (Picea abies (L.) Karst.) from simple stand and tree measurements. Forestry, 2003, 76, 525-546.	2.3	50

#	Article	IF	CITATIONS
37	Effect of stand density on radial growth of branches of Scots pine in southern and central Finland. Canadian Journal of Forest Research, 1999, 29, 1216-1224.	1.7	48
38	Geographical patterns in the radial growth response of Norway spruce provenances to climatic variation. Agricultural and Forest Meteorology, 2016, 222, 10-20.	4.8	45
39	Stem form and branchiness of Norway spruce as a sawn timber—Predicted by a process based model. Forest Ecology and Management, 2007, 241, 209-222.	3.2	43
40	Modelling branch characteristics of Norway spruce from wide spacings in Germany. Forest Ecology and Management, 2007, 242, 155-164.	3.2	43
41	Response of radial increment variation of Scots pine to temperature, precipitation and soil water content along a latitudinal gradient across Finland and Estonia. Agricultural and Forest Meteorology, 2014, 198-199, 294-308.	4.8	42
42	Forest susceptibility to storm damage is affected by similar factors regardless of storm type: Comparison of thunder storms and autumn extra-tropical cyclones in Finland. Forest Ecology and Management, 2016, 381, 17-28.	3.2	41
43	Fine-scale distribution of treeline trees and the nurse plant facilitation on the eastern Tibetan Plateau. Ecological Indicators, 2016, 66, 251-258.	6.3	41
44	Bayesian calibration of a carbon balance model PREBAS using data from permanent growth experiments and national forest inventory. Forest Ecology and Management, 2019, 440, 208-257.	3.2	40
45	Effect of sample selection on the environmental signal derived from tree-ring series. Forest Ecology and Management, 1999, 113, 83-89.	3.2	38
46	Effect of stand density on the branch development of silver birch (Betula pendula Roth) in central Finland. Trees - Structure and Function, 2002, 16, 346-353.	1.9	38
47	Does thinning intensity affect the tracheid dimensions of Norway spruce?. Canadian Journal of Forest Research, 2005, 35, 2685-2697.	1.7	38
48	Effect of half-systematic and systematic thinning on the increment of Scots pine and Norway spruce in Finland. Forestry, 2006, 79, 103-121.	2.3	38
49	Solar superstorm of AD 774 recorded subannually by Arctic tree rings. Nature Communications, 2018, 9, 3495.	12.8	38
50	Wood density of Norway spruce: Responses to timing and intensity of first commercial thinning and fertilisation. Forest Ecology and Management, 2006, 237, 513-521.	3.2	35
51	Do decomposing Scots pine, Norway spruce, and silver birch stems retain nitrogen?. Canadian Journal of Forest Research, 2008, 38, 3047-3055.	1.7	35
52	Intensive management of Scots pine stands in southern Finland: First empirical results and simulated further development. Forest Ecology and Management, 2005, 215, 37-50.	3.2	34
53	Wood density and tracheid properties of Scots pine: responses to repeated fertilization and timing of the first commercial thinning. Forestry, 2014, 87, 437-448.	2.3	34
54	Tree growth and its climate signal along latitudinal and altitudinal gradients: comparison of tree rings between Finland and the Tibetan Plateau. Biogeosciences, 2017, 14, 3083-3095.	3.3	34

#	Article	IF	CITATIONS
55	Growth response to cuttings in Norway spruce stands under even-aged and uneven-aged management. Forest Ecology and Management, 2019, 437, 314-323.	3.2	34
56	The suitability of height and radial increment variation in Pinus sylvestris (L.) for expressing environmental signals. Forest Ecology and Management, 1998, 112, 191-197.	3.2	32
57	Seasonal dynamics of the radial increment of Scots pine and Norway spruce in the southern and middle boreal zones in Finland. Canadian Journal of Forest Research, 2009, 39, 606-618.	1.7	32
58	Models relating stem growth to crown length dynamics: application to loblolly pine and Norway spruce. Trees - Structure and Function, 2012, 26, 469-478.	1.9	30
59	Radial, Height and Volume Increment Variation in Picea abies (L.) Karst. Stands with Varying Thinning Intensities. Scandinavian Journal of Forest Research, 2002, 17, 304-316.	1.4	29
60	Effect of intertree competition on branch characteristics of <i>Pinus sylvestris</i> families. Scandinavian Journal of Forest Research, 1996, 11, 129-136.	1.4	28
61	Volcanic dust veils from sixth century tree-ring isotopes linked to reduced irradiance, primary production and human health. Scientific Reports, 2018, 8, 1339.	3.3	28
62	Increment and decay in Norway spruce and Scots pine after artificial logging damage. Canadian Journal of Forest Research, 2007, 37, 2130-2141.	1.7	27
63	Harvesting damage caused by thinning of Norway spruce in unfrozen soil. International Journal of Forest Engineering, 2013, 24, 60-75.	0.8	26
64	Effects of thinning and fertilisation on tracheid dimensions and lignin content of Norway spruce. Holzforschung, 2007, 61, 301-310.	1.9	24
65	The effects of artificial soil frost on cambial activity and xylem formation in Norway spruce. Trees - Structure and Function, 2012, 26, 405-419.	1.9	24
66	Intra-annual tracheid formation of Norway spruce provenances in southern Finland. Trees - Structure and Function, 2012, 26, 543-555.	1.9	24
67	Predicting lumber grade and by-product yields for Scots pine trees. Forest Ecology and Management, 2009, 258, 146-158.	3.2	23
68	Frost rings in 1627 BC and AD 536 in subfossil pinewood from Finnish Lapland. Quaternary Science Reviews, 2019, 204, 208-215.	3.0	23
69	Effects of nutrient optimization on intra-annual wood formation in Norway spruce. Tree Physiology, 2013, 33, 1145-1155.	3.1	22
70	Bridging empirical and carbon-balance based forest site productivity – Significance of below-ground allocation. Forest Ecology and Management, 2016, 372, 64-77.	3.2	22
71	Large trees have increased greatly in Finland during 1921–2013, but recent observations on old trees tell a different story. Ecological Indicators, 2019, 99, 118-129.	6.3	22
72	Implications of delayed soil thawing on trees: A case study of a Picea abies stand. Scandinavian Journal of Forest Research, 2007, 22, 118-127.	1.4	21

#	Article	IF	CITATIONS
73	Predicting basal area of Scots pine branches. Forest Ecology and Management, 2003, 179, 351-362.	3.2	20
74	A new girth band for measuring stem diameter changes. Forestry, 2004, 77, 431-439.	2.3	19
75	Predicting wood and tracheid properties of Scots pine. Forest Ecology and Management, 2012, 279, 11-20.	3.2	19
76	Evaluation of models for branch characteristics of Scots pine in Finland. Forest Ecology and Management, 2002, 158, 25-39.	3.2	18
77	Automatic detection of onset and cessation of tree stem radius increase using dendrometer data. Neurocomputing, 2010, 73, 2039-2046.	5.9	18
78	Variation of tracheid length within annual rings of Scots pine and Norway spruce. Holzforschung, 2008, 62, 123-128.	1.9	17
79	Dynamics of diameter and height increment of Norway spruce and Scots pine in southern Finland. Annals of Forest Science, 2018, 75, 1.	2.0	17
80	An approach to assessing site index changes of Norway spruce based on spatially and temporally disjunct measurement series. Forest Ecology and Management, 2014, 323, 10-19.	3.2	16
81	Wood density of Norway spruce in uneven-aged stands. Canadian Journal of Forest Research, 2014, 44, 136-144.	1.7	16
82	Effects of pruning in Norway spruce on tree growth and grading of sawn boards in Finland. Forestry, 2014, 87, 417-424.	2.3	15
83	Effect of thinning on wood density and tracheid properties of Scots pine on drained peatland stands. Forestry, 2015, 88, 359-367.	2.3	15
84	Climatic signal in annual growth variation of Norway spruce (<i>Picea abies</i>) along a transect from central Finland to the Arctic timberline. Canadian Journal of Forest Research, 2000, 30, 769-777.	1.7	15
85	Photosynthesis, temperature and radial growth of Scots pine in northern Finland: identifying the influential time intervals. Trees - Structure and Function, 2011, 25, 323-332.	1.9	14
86	Effect of thinning and natural variation in bole roundness in Scots pine (Pinus sylvestris L.). Forest Ecology and Management, 1998, 107, 231-239.	3.2	13
87	Identifying the main drivers for the production and maturation of Scots pine tracheids along a temperature gradient. Agricultural and Forest Meteorology, 2017, 232, 210-224.	4.8	13
88	Effect of Nutrient Optimization on Branch Characteristics in Picea abies (L.) Karst. Scandinavian Journal of Forest Research, 2001, 16, 354-362.	1.4	12
89	Hmodel, a Heterobasidion annosum model for even-aged Norway spruce stands. Canadian Journal of Forest Research, 2014, 44, 796-809.	1.7	12
90	Reducing the effects of disturbance on treeâ€ring data using intervention detection. Scandinavian Journal of Forest Research, 1997, 12, 351-355.	1.4	11

#	Article	IF	CITATIONS
91	Connecting potential frost damage events identified from meteorological records to radial growth variation in Norway spruce and Scots pine. Trees - Structure and Function, 2017, 31, 2023-2034.	1.9	11
92	Size-class structure of the forests of Finland during 1921–2013: a recovery from centuries of exploitation, guided by forest policies. European Journal of Forest Research, 2020, 139, 279-293.	2.5	11
93	Predicting branch angle and branch diameter of Scots pine from usual tree measurements and stand structural information. Canadian Journal of Forest Research, 1998, 28, 1686-1696.	1.7	11
94	Value of quality information of Scots pine stands in timber bidding. Canadian Journal of Forest Research, 2010, 40, 1781-1790.	1.7	10
95	Site index changes of Scots pine, Norway spruce and larch stands in southern and central Finland. Agricultural and Forest Meteorology, 2017, 237-238, 95-104.	4.8	10
96	High-resolution topographical information improves tree-level storm damage models. Canadian Journal of Forest Research, 2018, 48, 721-728.	1.7	10
97	Increment cores from the Finnish National Forest Inventory as a source of information for studying intra-annual wood formation. Dendrochronologia, 2008, 26, 133-140.	2.2	9
98	Factors influencing the branchiness of young Scots pine trees. Forestry, 2014, 87, 257-265.	2.3	9
99	Effects of precipitation and temperature on the growth variation of Scots pine—A case study at two extreme sites in Finland. Dendrochronologia, 2017, 46, 35-45.	2.2	9
100	Including variation in branch and tree properties improves timber grade estimates in Scots pine stands. Canadian Journal of Forest Research, 2018, 48, 542-553.	1.7	8
101	Site carrying capacity of Norway spruce and Scots pine stands has increased in Germany and northern Europe. Forest Ecology and Management, 2021, 492, 119214.	3.2	8
102	Effect of intertree competition on biomass production of Pinus sylvestris (L.) half-sib families. Forest Ecology and Management, 1996, 86, 105-112.	3.2	7
103	Predicting timber properties from tree measurements at felling: Evaluation of the RetroSTEM model and TreeViz software for Norway spruce. Forest Ecology and Management, 2008, 255, 3524-3533.	3.2	7
104	Estimating the value of wood quality information in constrained optimization. Canadian Journal of Forest Research, 2012, 42, 1347-1358.	1.7	6
105	Evaluation of stand-level hybrid PipeQual model with permanent sample plot data of Norway spruce. Canadian Journal of Forest Research, 2017, 47, 234-245.	1.7	6
106	Predicting knottiness of Scots pine stems for quality bucking. European Journal of Wood and Wood Products, 2020, 78, 143-150.	2.9	6
107	Reliability of temperature signal in various climate indicators from northern Europe. PLoS ONE, 2017, 12, e0180042.	2.5	5
108	Effect of Nutrient Optimization on Branch Characteristics in Picea abies (L.) Karst Scandinavian Journal of Forest Research, 2001, 16, 354-362.	1.4	4

HARRI MÃRINEN

#	Article	IF	CITATIONS
109	Effect of stand density on radial growth of branches of Scots pine in southern and central Finland. Canadian Journal of Forest Research, 1999, 29, 1216-1224.	1.7	4
110	Predicting the number, death, and self-pruning of branches in Scots pine. Canadian Journal of Forest Research, 1999, 29, 1225-1236.	1.7	4
111	Log end face image and stem tapering indicate maximum bow height on Norway spruce bottom logs. European Journal of Forest Research, 2020, 139, 1079-1090.	2.5	3
112	Soil frost affects stem diameter growth of Norway spruce with delay. Trees - Structure and Function, 2021, 35, 761-767.	1.9	3
113	Reply to Elmendorf and Ettinger: Photoperiod plays a dominant and irreplaceable role in triggering secondary growth resumption. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32865-32867.	7.1	2
114	Growth, suppression, death, and self-pruning of branches of Scots pine in southern and central Finland. Canadian Journal of Forest Research, 1999, 29, 585-594.	1.7	2
115	From lakes to ratios: 14C measurement process of the Finnish tree-ring research consortium. Nuclear Instruments & Methods in Physics Research B, 2022, 519, 37-45.	1.4	2
116	Modeling persistence of coarse woody debris residuals in boreal forests as an ecological property. Ecosphere, 2021, 12, e03792.	2.2	1
117	Smoothed Prediction of the Onset of Tree Stem Radius Increase Based on Temperature Patterns. Lecture Notes in Computer Science, 2008, , 100-111.	1.3	0