
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3267127/publications.pdf Version: 2024-02-01



ANDREIL RICO

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Pharmaceutical pollution of the world's rivers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .                                                                                        | 3.3 | 495       |
| 2  | Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture, 2013, 412-413, 231-243.                                                             | 1.7 | 288       |
| 3  | Use of chemicals and biological products in Asian aquaculture and their potential environmental risks: a critical review. Reviews in Aquaculture, 2012, 4, 75-93.                                                                    | 4.6 | 209       |
| 4  | Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustainability Science, 2018, 13, 1105-1120.                                        | 2.5 | 147       |
| 5  | Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand. Environmental<br>Pollution, 2014, 191, 8-16.                                                                                              | 3.7 | 132       |
| 6  | Ecological risk assessment of the antibiotic enrofloxacin applied to Pangasius catfish farms in the<br>Mekong Delta, Vietnam. Chemosphere, 2015, 119, 407-414.                                                                       | 4.2 | 114       |
| 7  | Probabilistic risk assessment of veterinary medicines applied to four major aquaculture species produced in Asia. Science of the Total Environment, 2014, 468-469, 630-641.                                                          | 3.9 | 107       |
| 8  | Evaluating aquatic invertebrate vulnerability to insecticides based on intrinsic sensitivity, biological traits, and toxic mode of action. Environmental Toxicology and Chemistry, 2015, 34, 1907-1917.                              | 2.2 | 99        |
| 9  | Toward sustainable environmental quality: Priority research questions for Europe. Environmental<br>Toxicology and Chemistry, 2018, 37, 2281-2295.                                                                                    | 2.2 | 98        |
| 10 | Measuring the potential for sustainable intensification of aquaculture in Bangladesh using life cycle<br>assessment. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,<br>2958-2963.       | 3.3 | 90        |
| 11 | An assessment of chemical and biological product use in aquaculture in Bangladesh. Aquaculture, 2016, 454, 199-209.                                                                                                                  | 1.7 | 87        |
| 12 | Effects of water scarcity and chemical pollution in aquatic ecosystems: State of the art. Science of the Total Environment, 2016, 572, 390-403.                                                                                      | 3.9 | 83        |
| 13 | Effects of malathion and carbendazim on Amazonian freshwater organisms: comparison of tropical and temperate species sensitivity distributions. Ecotoxicology, 2011, 20, 625-634.                                                    | 1.1 | 75        |
| 14 | Occurrence and ecological risks of pharmaceuticals in a Mediterranean river in Eastern Spain.<br>Environment International, 2020, 144, 106004.                                                                                       | 4.8 | 74        |
| 15 | Lethal and sub-lethal effects of five pesticides used in rice farming on the earthworm Eisenia fetida.<br>Ecotoxicology and Environmental Safety, 2016, 127, 222-229.                                                                | 2.9 | 70        |
| 16 | Comparison of Asian Aquaculture Products by Use of Statistically Supported Life Cycle Assessment.<br>Environmental Science & Technology, 2015, 49, 14176-14183.                                                                      | 4.6 | 58        |
| 17 | Identification of contaminants of concern in the upper Tagus river basin (central Spain). Part 1:<br>Screening, quantitative analysis and comparison of sampling methods. Science of the Total<br>Environment, 2019, 666, 1058-1070. | 3.9 | 56        |
| 18 | Developing ecological scenarios for the prospective aquatic risk assessment of pesticides. Integrated<br>Environmental Assessment and Management, 2016, 12, 510-521.                                                                 | 1.6 | 54        |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A probabilistic approach to assess antibiotic resistance development risks in environmental<br>compartments and its application to an intensive aquaculture production scenario. Environmental<br>Pollution, 2017, 231, 918-928.                      | 3.7 | 54        |
| 20 | Effects of the antibiotic enrofloxacin on the ecology of tropical eutrophic freshwater microcosms.<br>Aquatic Toxicology, 2014, 147, 92-104.                                                                                                          | 1.9 | 53        |
| 21 | Relative influence of chemical and non-chemical stressors on invertebrate communities: a case study in the Danube River. Science of the Total Environment, 2016, 571, 1370-1382.                                                                      | 3.9 | 53        |
| 22 | Spatio-temporal distribution of microplastics in a Mediterranean river catchment: The importance of wastewater as an environmental pathway. Journal of Hazardous Materials, 2021, 420, 126481.                                                        | 6.5 | 53        |
| 23 | Risk assessment of pesticides used in rice-prawn concurrent systems in Bangladesh. Science of the<br>Total Environment, 2016, 568, 498-506.                                                                                                           | 3.9 | 51        |
| 24 | Effects of imidacloprid and a neonicotinoid mixture on aquatic invertebrate communities under<br>Mediterranean conditions. Aquatic Toxicology, 2018, 204, 130-143.                                                                                    | 1.9 | 50        |
| 25 | Hospital discharges in urban sanitation systems: Long-term monitoring of wastewater resistome and microbiota in relationship to their eco-exposome. Water Research X, 2020, 7, 100045.                                                                | 2.8 | 49        |
| 26 | Combined effects of heatwaves and micropollutants on freshwater ecosystems: Towards an<br>integrated assessment of extreme events in multiple stressors research. Global Change Biology, 2022,<br>28, 1248-1267.                                      | 4.2 | 47        |
| 27 | Environmental and human health risks of antimicrobials used in Fenneropenaeus chinensis<br>aquaculture production in China. Environmental Science and Pollution Research, 2016, 23, 15689-15702.                                                      | 2.7 | 41        |
| 28 | Identification of contaminants of concern in the upper Tagus river basin (central Spain). Part 2:<br>Spatio-temporal analysis and ecological risk assessment. Science of the Total Environment, 2019, 667,<br>222-233.                                | 3.9 | 39        |
| 29 | Assessing population exposure to phthalate plasticizers in thirteen Spanish cities through the analysis of wastewater. Journal of Hazardous Materials, 2021, 401, 123272.                                                                             | 6.5 | 39        |
| 30 | Fate of microplastics in agricultural soils amended with sewage sludge: Is surface water runoff a relevant environmental pathway?. Environmental Pollution, 2022, 293, 118520.                                                                        | 3.7 | 37        |
| 31 | An evaluation of fish health-management practices and occupational health hazards associated with<br>Pangasius catfish ( <i>Pangasianodon hypophthalmus</i> ) aquaculture in the Mekong Delta, Vietnam.<br>Aquaculture Research, 2016, 47, 2778-2794. | 0.9 | 35        |
| 32 | Pharmaceuticals and other urban contaminants threaten Amazonian freshwater ecosystems.<br>Environment International, 2021, 155, 106702.                                                                                                               | 4.8 | 33        |
| 33 | An optimized sample treatment method for the determination of antibiotics in seawater, marine sediments and biological samples using LC-TOF/MS. Science of the Total Environment, 2018, 643, 994-1004.                                                | 3.9 | 31        |
| 34 | The embodiment of wastewater data for the estimation of illicit drug consumption in Spain. Science of the Total Environment, 2021, 772, 144794.                                                                                                       | 3.9 | 31        |
| 35 | Assessing alcohol consumption through wastewater-based epidemiology: Spain as a case study. Drug and Alcohol Dependence, 2020, 215, 108241.                                                                                                           | 1.6 | 30        |
| 36 | Biodiversity impacts by multiple anthropogenic stressors in Mediterranean coastal wetlands. Science<br>of the Total Environment, 2022, 818, 151712.                                                                                                   | 3.9 | 30        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effects of temperature, genetic variation and species competition on the sensitivity of algae<br>populations to the antibiotic enrofloxacin. Ecotoxicology and Environmental Safety, 2018, 148,<br>228-236.                                     | 2.9 | 29        |
| 38 | Effect of Parathion-Methyl on Amazonian Fish and Freshwater Invertebrates: A Comparison of<br>Sensitivity with Temperate Data. Archives of Environmental Contamination and Toxicology, 2010, 58,<br>765-771.                                    | 2.1 | 28        |
| 39 | Toward refined environmental scenarios for ecological risk assessment of down-the-drain chemicals<br>in freshwater environments. Integrated Environmental Assessment and Management, 2017, 13, 233-248.                                         | 1.6 | 28        |
| 40 | An assessment of health management practices and occupational health hazards in tiger shrimp<br>(Penaeus monodon) and freshwater prawn (Macrobrachium rosenbergii) aquaculture in Bangladesh.<br>Veterinary and Animal Science, 2018, 5, 10-19. | 0.6 | 27        |
| 41 | Fish farming, metals and antibiotics in the eastern Mediterranean Sea: Is there a threat to sediment wildlife?. Science of the Total Environment, 2021, 764, 142843.                                                                            | 3.9 | 27        |
| 42 | Effects of anthropogenic pollution and hydrological variation on macroinvertebrates in<br>Mediterranean rivers: A case-study in the upper Tagus river basin (Spain). Science of the Total<br>Environment, 2021, 766, 144044.                    | 3.9 | 27        |
| 43 | Wide-scope screening of pharmaceuticals, illicit drugs and their metabolites in the Amazon River.<br>Water Research, 2021, 200, 117251.                                                                                                         | 5.3 | 27        |
| 44 | Reconciling monitoring and modeling: An appraisal of river monitoring networks based on a spatial autocorrelation approach - emerging pollutants in the Danube River as a case study. Science of the Total Environment, 2018, 618, 323-335.     | 3.9 | 26        |
| 45 | Ecological risk assessment of pesticides in urban streams of the Brazilian Amazon. Chemosphere, 2022, 291, 132821.                                                                                                                              | 4.2 | 26        |
| 46 | Freshwater shrimps as sensitive test species for the risk assessment of pesticides in the tropics.<br>Environmental Science and Pollution Research, 2018, 25, 13235-13243.                                                                      | 2.7 | 25        |
| 47 | First nation-wide estimation of tobacco consumption in Spain using wastewater-based epidemiology.<br>Science of the Total Environment, 2020, 741, 140384.                                                                                       | 3.9 | 24        |
| 48 | Effects of multiple stressors on the dimensionality of ecological stability. Ecology Letters, 2021, 24, 1594-1606.                                                                                                                              | 3.0 | 24        |
| 49 | MODELING ENVIRONMENTAL AND HUMAN HEALTH RISKS OF VETERINARY MEDICINAL PRODUCTS APPLIED IN POND AQUACULTURE. Environmental Toxicology and Chemistry, 2013, 32, 1196-1207.                                                                        | 2.2 | 22        |
| 50 | Species interactions and chemical stress: Combined effects of intraspecific and interspecific interactions and pyrene on <i>Daphnia magna</i> population dynamics. Environmental Toxicology and Chemistry, 2015, 34, 1751-1759.                 | 2.2 | 22        |
| 51 | Antimicrobial use in aquaculture: Some complementing facts. Proceedings of the National Academy of<br>Sciences of the United States of America, 2015, 112, E3317.                                                                               | 3.3 | 21        |
| 52 | Effects of increased temperature, drought, and an insecticide on freshwater zooplankton communities. Environmental Toxicology and Chemistry, 2019, 38, 396-411.                                                                                 | 2.2 | 21        |
| 53 | Ciliates as model organisms for the ecotoxicological risk assessment of heavy metals: A<br>meta–analysis. Ecotoxicology and Environmental Safety, 2020, 199, 110669.                                                                            | 2.9 | 21        |
| 54 | Effects of aquaculture waste feeds and antibiotics on marine benthic ecosystems in the<br>Mediterranean Sea. Science of the Total Environment, 2022, 806, 151190.                                                                               | 3.9 | 21        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effect of multiple agricultural stressors on freshwater ecosystems: The role of community<br>structure, trophic status, and biodiversity-functioning relationships on ecosystem responses. Science<br>of the Total Environment, 2022, 807, 151052.   | 3.9 | 21        |
| 56 | ls the Effect Assessment Approach for Fungicides as Laid Down in the European Food Safety Authority<br>Aquatic Guidance Document Sufficiently Protective for Freshwater Ecosystems?. Environmental<br>Toxicology and Chemistry, 2019, 38, 2279-2293. | 2.2 | 20        |
| 57 | Occurrence, Fate and Fluxes of Plastics and Microplastics in Terrestrial and Freshwater Ecosystems.<br>Reviews of Environmental Contamination and Toxicology, 2020, 250, 1-43.                                                                       | 0.7 | 19        |
| 58 | Multiple stressors in Mediterranean coastal wetland ecosystems: Influence of salinity and an<br>insecticide on zooplankton communities under different temperature conditions. Chemosphere, 2021,<br>269, 129381.                                    | 4.2 | 17        |
| 59 | Is the chronic Tier-1 effect assessment approach for insecticides protective for aquatic ecosystems?.<br>Integrated Environmental Assessment and Management, 2016, 12, 747-758.                                                                      | 1.6 | 16        |
| 60 | Use of models for the environmental risk assessment ofÂveterinary medicines in European<br>aquaculture: currentÂsituation and future perspectives. Reviews in Aquaculture, 2019, 11, 969-988.                                                        | 4.6 | 16        |
| 61 | Use of Postregistration Monitoring Data to Evaluate the Ecotoxicological Risks of Pesticides to<br>Surface Waters: A Case Study with Chlorpyrifos in the Iberian Peninsula. Environmental Toxicology<br>and Chemistry, 2021, 40, 500-512.            | 2.2 | 16        |
| 62 | Effects of intra- and interspecific competition on the sensitivity of Daphnia magna populations to the fungicide carbendazim. Ecotoxicology, 2015, 24, 1362-1371.                                                                                    | 1.1 | 15        |
| 63 | Influence of microplastics on the bioconcentration of organic contaminants in fish: Is the "Trojan<br>horse―effect a matter of concern?. Environmental Pollution, 2022, 306, 119473.                                                                 | 3.7 | 15        |
| 64 | Ecological risk assessment of pesticides in the Mijares River (eastern Spain) impacted by citrus<br>production using wide-scope screening and target quantitative analysis. Journal of Hazardous<br>Materials, 2021, 412, 125277.                    | 6.5 | 13        |
| 65 | Effects of intra- and interspecific competition on the sensitivity of aquatic macroinvertebrates to carbendazim. Ecotoxicology and Environmental Safety, 2015, 120, 27-34.                                                                           | 2.9 | 12        |
| 66 | Interaction between stress induced by competition, predation, and an insecticide on the response of aquatic invertebrates. Environmental Toxicology and Chemistry, 2017, 36, 2485-2492.                                                              | 2.2 | 12        |
| 67 | Ecotoxicity assessment of microcystins from freshwater samples using a bioluminescent cyanobacterial bioassay. Chemosphere, 2020, 240, 124966.                                                                                                       | 4.2 | 10        |
| 68 | Influence of pH on the toxicity of ionisable pharmaceuticals and personal care products to freshwater invertebrates. Ecotoxicology and Environmental Safety, 2020, 191, 110172.                                                                      | 2.9 | 10        |
| 69 | Double constrained ordination for assessing biological trait responses to multiple stressors: A case study with benthic macroinvertebrate communities. Science of the Total Environment, 2021, 754, 142171.                                          | 3.9 | 9         |
| 70 | The Concept of Resilience in Ecological Risk Assessment: Scientific and Regulatory Issues. Integrated Environmental Assessment and Management, 2018, 14, 581-585.                                                                                    | 1.6 | 8         |
| 71 | Micro and Nano-Plastics in the Environment: Research Priorities for the Near Future. Reviews of Environmental Contamination and Toxicology, 2021, 257, 163-218.                                                                                      | 0.7 | 8         |
| 72 | The potential for using red claw crayfish and hybrid African catfish as biological control agents for<br><i>Schistosoma</i> host snails. African Journal of Aquatic Science, 2017, 42, 235-243.                                                      | 0.5 | 7         |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Eutrophic status influences the impact of pesticide mixtures and predation on <i>Daphnia pulex</i> populations. Ecology and Evolution, 2021, 11, 4046-4057.                                                                           | 0.8 | 6         |
| 74 | Food web rewiring drives long-term compositional differences and late-disturbance interactions at<br>the community level. Proceedings of the National Academy of Sciences of the United States of<br>America, 2022, 119, e2117364119. | 3.3 | 6         |
| 75 | ECORISK2050: An Innovative Training Network for predictingÂthe effects of global change on the emission, fate, effects, and risks of chemicals in aquatic ecosystems. Open Research Europe, 0, 1, 154.                                | 2.0 | 3         |
| 76 | Effects of silver sulfide nanoparticles on the earthworm Eisenia andrei. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 257, 109355.                                                            | 1.3 | 2         |
| 77 | Length-mass relationships for macroinvertebrates in the Choghakhor international wetland, Iran.<br>Biologia (Poland), 2021, 76, 645-653.                                                                                              | 0.8 | 1         |
| 78 | Using lifeâ€history trait variation to inform ecological risk assessments for threatened and<br>endangered plant species. Integrated Environmental Assessment and Management, 2023, 19, 213-223.                                      | 1.6 | 1         |
| 79 | ECORISK2050: An Innovative Training Network for predictingÂthe effects of global change on the emission, fate, effects, and risks of chemicals in aquatic ecosystems. Open Research Europe, 0, 1, 154.                                | 2.0 | 0         |