Balaji Sundara Sekar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3266969/publications.pdf

Version: 2024-02-01

759055 940416 19 338 12 16 citations h-index g-index papers 20 20 20 378 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bioproduction of Natural Phenethyl Acetate, Phenylacetic Acid, Ethyl Phenylacetate, and Phenethyl Phenylacetate from Renewable Feedstock. ChemSusChem, 2022, 15, .	3.6	11
2	Production of fine chemicals from renewable feedstocks through the engineering of artificial enzyme cascades., 2022,, 261-279.		0
3	Bioproduction of Enantiopure (<i>R</i>)―and (<i>S</i>)â€2â€Phenylglycinols from Styrenes and Renewable Feedstocks. Advanced Synthesis and Catalysis, 2021, 363, 1892-1903.	2.1	16
4	Recent advances in artificial enzyme cascades for the production of value-added chemicals. Bioresource Technology, 2021, 323, 124551.	4.8	38
5	Production of (R)-mandelic acid from styrene, L-phenylalanine, glycerol, or glucose via cascade biotransformations. Bioresources and Bioprocessing, 2021, 8, .	2.0	14
6	Benzoic acid production via cascade biotransformation and coupled fermentationâ€biotransformation. Biotechnology and Bioengineering, 2020, 117, 2340-2350.	1.7	21
7	Whole Cellâ€Based Cascade Biotransformation for the Production of (<i>S</i>)â€Mandelic Acid from Styrene, <i>L</i> àêPhenylalanine, Glucose, or Glycerol. Advanced Synthesis and Catalysis, 2019, 361, 3560-3568.	2.1	26
8	Co-production of hydrogen and ethanol from glucose in Escherichia coli by activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase (pgi) and overexpression of glucose-6-phosphate dehydrogenase (zwf) and 6-phosphogluconate dehydrogenase (gnd). Biotechnology for Biofuels, 2017, 10, 85.	6.2	34
9	Metabolic engineering of Klebsiella pneumoniae J2B for co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol: Reduction of acetate and other by-products. Bioresource Technology, 2017, 244, 1096-1103.	4.8	41
10	Improvement of 1,3-propanediol oxidoreductase (DhaT) stability against 3-hydroxypropionaldehyde by substitution of cysteine residues. Biotechnology and Bioprocess Engineering, 2016, 21, 695-703.	1.4	8
11	Co-production of hydrogen and ethanol by pfkA-deficient Escherichia coli with activated pentose-phosphate pathway: reduction of pyruvate accumulation. Biotechnology for Biofuels, 2016, 9, 95.	6.2	20
12	Coâ€production of hydrogen and ethanol from glucose by modification of glycolytic pathways in <i>Escherichia coli ⟨i⟩ – from Embdenâ€Meyerhofâ€Parnas pathway to pentose phosphate pathway. Biotechnology Journal, 2016, 11, 249-256.</i>	1.8	31
13	Evaluation of Newly Isolated Klebsiella pneumoniae Strains for the Co-Production of 3-hydroxypropionic acid and 1,3-propanediol from Glycerol. KSBB Journal, 2016, 31, 246-255.	0.1	O
14	Characterization of 1,3-propanediol oxidoreductase (DhaT) from Klebsiella pneumoniae J2B. Biotechnology and Bioprocess Engineering, 2015, 20, 971-979.	1.4	19
15	Metabolic engineering of Escherichia coli strains for co-production of hydrogen and ethanol from glucose. International Journal of Hydrogen Energy, 2014, 39, 19323-19330.	3 . 8	17
16	Cloning and functional expression of Citrobacter amalonaticus Y19 carbon monoxide dehydrogenase in Escherichia coli. International Journal of Hydrogen Energy, 2014, 39, 15446-15454.	3.8	7
17	Improvement of carbon monoxide-dependent hydrogen production activity in Citrobacter amalonaticus Y19 by over-expressing the CO-sensing transcriptional activator, CooA. International Journal of Hydrogen Energy, 2014, 39, 10417-10425.	3 . 8	15
18	Isolation of a novel Pseudomonas species SP2 producing vitamin B12 under aerobic condition. Biotechnology and Bioprocess Engineering, 2013, 18, 43-51.	1.4	10

#	ARTICLE	IF	CITATIONS
19	Production of Natural 2-Phenylethanol from Glucose or Glycerol with Coupled <i>Escherichia coli</i> Strains Expressing <scp>I</scp> -Phenylalanine Biosynthesis Pathway and Artificial Biocascades. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	10