Given Names Deactivated Family Name

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3266680/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. Journal of the American Chemical Society, 2008, 130, 5856-5857.	6.6	3,085
2	Self-Assembled Graphene Hydrogel <i>via</i> a One-Step Hydrothermal Process. ACS Nano, 2010, 4, 4324-4330.	7.3	2,999
3	An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 2013, 64, 225-229.	5.4	1,785
4	Functional Composite Materials Based on Chemically Converted Graphene. Advanced Materials, 2011, 23, 1089-1115.	11.1	973
5	Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications, 2008, 10, 1555-1558.	2.3	802
6	Three-dimensional graphene architectures. Nanoscale, 2012, 4, 5549.	2.8	754
7	Graphene based catalysts. Energy and Environmental Science, 2012, 5, 8848.	15.6	726
8	The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Research, 2016, 44, D372-D379.	6.5	711
9	Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon, 2009, 47, 3538-3543.	5.4	671
10	A pH-sensitive graphene oxide composite hydrogel. Chemical Communications, 2010, 46, 2376.	2.2	617
11	Conducting polymer nanomaterials: electrosynthesis and applications. Chemical Society Reviews, 2009, 38, 2397.	18.7	615
12	On the Gelation of Graphene Oxide. Journal of Physical Chemistry C, 2011, 115, 5545-5551.	1.5	603
13	Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chemical Communications, 2009, , 1667.	2.2	569
14	Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Scientific Reports, 2012, 2, 247.	1.6	559
15	Chemically Converted Graphene Induced Molecular Flattening of 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin and Its Application for Optical Detection of Cadmium(II) Ions. Journal of the American Chemical Society, 2009, 131, 13490-13497.	6.6	497
16	High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon, 2015, 81, 826-834.	5.4	443
17	The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Scientific Reports, 2013, 3, 2248.	1.6	432
18	Graphene Hydrogels Deposited in Nickel Foams for Highâ€Rate Electrochemical Capacitors. Advanced Materials, 2012, 24, 4569-4573.	11.1	409

#	Article	IF	CITATIONS
19	Highâ€Performance NO ₂ Sensors Based on Chemically Modified Graphene. Advanced Materials, 2013, 25, 766-771.	11.1	404
20	Highly Compressible Macroporous Graphene Monoliths via an Improved Hydrothermal Process. Advanced Materials, 2014, 26, 4789-4793.	11.1	354
21	Graphene-Based Membranes for Molecular Separation. Journal of Physical Chemistry Letters, 2015, 6, 2806-2815.	2.1	316
22	Graphene Materials for Electrochemical Capacitors. Journal of Physical Chemistry Letters, 2013, 4, 1244-1253.	2.1	288
23	Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst. Chemical Communications, 2010, 46, 4740.	2.2	287
24	High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Materials, 2011, 26, 9-15.	2.9	283
25	Graphene oxide/conducting polymer composite hydrogels. Journal of Materials Chemistry, 2011, 21, 18653.	6.7	283
26	Functional Gels Based on Chemically Modified Graphenes. Advanced Materials, 2014, 26, 3992-4012.	11.1	276
27	Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Physical Chemistry Chemical Physics, 2013, 15, 9907.	1.3	266
28	Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups. Chemical Science, 2016, 7, 1874-1881.	3.7	251
29	Electrochemical Deposition of Polypyrrole/Sulfonated Graphene Composite Films. Journal of Physical Chemistry C, 2010, 114, 22783-22789.	1.5	236
30	Hydrogen Evolution Reaction in Alkaline Media: Alpha- or Beta-Nickel Hydroxide on the Surface of Platinum?. ACS Energy Letters, 2018, 3, 237-244.	8.8	230
31	A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents. Chemical Communications, 2011, 47, 4962.	2.2	225
32	Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nature Nanotechnology, 2021, 16, 811-819.	15.6	193
33	Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. Journal of Materials Chemistry, 2011, 21, 7376.	6.7	187
34	Ultratough, Ultrastrong, and Highly Conductive Graphene Films with Arbitrary Sizes. Advanced Materials, 2014, 26, 7588-7592.	11.1	182
35	Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol–water. Bioresource Technology, 2012, 124, 190-198.	4.8	179
36	Bio-oil production from sub- and supercritical water liquefaction of microalgae Dunaliella tertiolecta and related properties. Energy and Environmental Science, 2010, 3, 1073-1078.	15.6	178

#	Article	IF	CITATIONS
37	Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering. Physical Chemistry Chemical Physics, 2012, 14, 7360.	1.3	161
38	Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide hydrogels. Nanoscale, 2013, 5, 3780.	2.8	160
39	Plant leaves inspired sunlight-driven purifier for high-efficiency clean water production. Nature Communications, 2019, 10, 1512.	5.8	160
40	Multifunctional Pristine Chemically Modified Graphene Films as Strong as Stainless Steel. Advanced Materials, 2015, 27, 6708-6713.	11.1	157
41	All-region-applicable, continuous power supply of graphene oxide composite. Energy and Environmental Science, 2019, 12, 1848-1856.	15.6	150
42	Size Fractionation of Graphene Oxide Sheets via Filtration through Trackâ€Etched Membranes. Advanced Materials, 2015, 27, 3654-3660.	11.1	149
43	High-Quality Graphene Ribbons Prepared from Graphene Oxide Hydrogels and Their Application for Strain Sensors. ACS Nano, 2015, 9, 12320-12326.	7.3	148
44	A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale, 2018, 10, 6837-6843.	2.8	146
45	Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic devices. Polymer, 2011, 52, 5567-5572.	1.8	145
46	An alumina stabilized ZnO–graphene anode for lithium ion batteries via atomic layer deposition. Nanoscale, 2014, 6, 11419-11424.	2.8	142
47	An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering. Energy and Environmental Science, 2016, 9, 2005-2010.	15.6	142
48	A Turn-on Fluorescent Sensor for Pyrophosphate Based on the Disassembly of Cu ²⁺ -Mediated Perylene Diimide Aggregates. ACS Applied Materials & Interfaces, 2012, 4, 614-618.	4.0	139
49	Nanoporous nitrogen doped carbon modified graphene as electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry, 2012, 22, 12810.	6.7	138
50	Three-dimensional porous graphene/polyaniline composites for high-rate electrochemical capacitors. Journal of Materials Chemistry A, 2014, 2, 17489-17494.	5.2	138
51	Pristine Titanium Carbide MXene Films with Environmentally Stable Conductivity and Superior Mechanical Strength. Advanced Functional Materials, 2020, 30, 1906996.	7.8	138
52	Thermochemical Catalytic Liquefaction of the Marine Microalgae <i>Dunaliella tertiolecta</i> and Characterization of Bio-oils. Energy & Fuels, 2009, 23, 3753-3758.	2.5	137
53	Performance enhancement of a graphene–sulfur composite as a lithium–sulfur battery electrode by coating with an ultrathin Al2O3 film via atomic layer deposition. Journal of Materials Chemistry A, 2014, 2, 7360.	5.2	135
54	Highly Efficient Clean Water Production from Contaminated Air with a Wide Humidity Range. Advanced Materials, 2020, 32, e1905875.	11.1	123

#	Article	IF	CITATIONS
55	Bifunctional Graphene/ <i>γ</i> â€Fe ₂ O ₃ Hybrid Aerogels with Double Nanocrystalline Networks for Enzyme Immobilization. Small, 2013, 9, 2331-2340.	5.2	121
56	Thermochemical conversion of low-lipid microalgae for the production of liquid fuels: challenges and opportunities. RSC Advances, 2015, 5, 18673-18701.	1.7	120
57	Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance. Energy and Environmental Science, 2018, 11, 559-565.	15.6	119
58	Solution-Processed PEDOT:PSS/Graphene Composites as the Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2014, 6, 3587-3593.	4.0	115
59	Synthesis and Characterization of 3D Dendritic Gold Nanostructures and Their Use as Substrates for Surface-Enhanced Raman Scattering. Chemistry of Materials, 2007, 19, 3433-3440.	3.2	110
60	A graphene wrapped hair-derived carbon/sulfur composite for lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 9609-9615.	5.2	109
61	Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants. Metabolic Engineering, 2018, 45, 43-50.	3.6	109
62	Topological Design of Ultrastrong and Highly Conductive Graphene Films. Advanced Materials, 2017, 29, 1702831.	11.1	108
63	Dual-protection of a graphene-sulfur composite by a compact graphene skin and an atomic layer deposited oxide coating for a lithium-sulfur battery. Nanoscale, 2015, 7, 5292-5298.	2.8	102
64	Colorimetric and fluorescent dual probe based on a polythiophene derivative for the detection of cysteine and homocysteine. Chemical Communications, 2011, 47, 7431.	2.2	99
65	Composite nanofibers of conducting polymers and hydrophobic insulating polymers: Preparation and sensing applications. Polymer, 2009, 50, 3292-3301.	1.8	88
66	Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance. Nanoscale, 2013, 5, 7361.	2.8	87
67	Pristine Titanium Carbide MXene Hydrogel Matrix. ACS Nano, 2020, 14, 10471-10479.	7.3	87
68	A high-performance current collector-free flexible in-plane micro-supercapacitor based on a highly conductive reduced graphene oxide film. Journal of Materials Chemistry A, 2016, 4, 16213-16218.	5.2	86
69	Conjugated polyelectrolyte as a colorimetric and fluorescent probe for the detection of glutathione. Chemical Communications, 2009, , 5886.	2.2	85
70	Highly conductive and flexible mesoporous graphitic films prepared by graphitizing the composites of graphene oxide and nanodiamond. Journal of Materials Chemistry, 2011, 21, 7154.	6.7	85
71	Transparent Polymeric Strain Sensors for Monitoring Vital Signs and Beyond. ACS Applied Materials & Interfaces, 2018, 10, 3895-3901.	4.0	85
72	Solution-processable graphene nanomeshes with controlled pore structures. Scientific Reports, 2013, 3, 1996.	1.6	83

#	Article	IF	CITATIONS
73	Maximization of Spatial Charge Density: An Approach to Ultrahigh Energy Density of Capacitive Charge Storage. Angewandte Chemie - International Edition, 2020, 59, 14541-14549.	7.2	83
74	Colorimetric Assays for Acetylcholinesterase Activity and Inhibitor Screening Based on the Disassemblyâ~'Assembly of a Water-Soluble Polythiophene Derivative. ACS Applied Materials & Interfaces, 2011, 3, 1306-1310.	4.0	81
75	Polythiophene-Based Optical Sensors for Small Molecules. ACS Applied Materials & Interfaces, 2013, 5, 4503-4510.	4.0	81
76	High-performance and flexible electrochemical capacitors based on graphene/polymer composite films. Journal of Materials Chemistry A, 2014, 2, 968-974.	5.2	79
77	Polypyrrole micro- and nanowires synthesized by electrochemical polymerization of pyrrole in the aqueous solutions of pyrenesulfonic acid. Polymer, 2006, 47, 1778-1784.	1.8	78
78	Synthesis of graphene oxide sheets with controlled sizes from sieved graphite flakes. Carbon, 2016, 110, 34-40.	5.4	77
79	A simple approach for the discrimination of nucleotides based on a water-soluble polythiophene derivative. Chemical Communications, 2009, , 4696.	2.2	74
80	Graphene oxide induced hydrothermal carbonization of egg proteins for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 17040-17047.	5.2	74
81	Electrosynthesis of polypyrrole/sulfonated polyaniline composite films and their applications for ammonia gas sensing. Polymer, 2007, 48, 4015-4020.	1.8	73
82	Enhanced stability and separation efficiency of graphene oxide membranes in organic solvent nanofiltration. Journal of Materials Chemistry A, 2018, 6, 19563-19569.	5.2	72
83	Carbon nanotube-based fluorescence sensors. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 19, 20-34.	5.6	71
84	Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature. Chemical Communications, 2006, , 1655.	2.2	69
85	Rapid nitroaromatic compounds sensing based on oligopyrene. Sensors and Actuators B: Chemical, 2008, 130, 777-782.	4.0	66
86	Preparation of Highly Conductive Goldâ^'Poly(3,4-ethylenedioxythiophene) Nanocables and Their Conversion to Poly(3,4-ethylenedioxythiophene) Nanotubes. Journal of Physical Chemistry C, 2007, 111, 5926-5931.	1.5	65
87	A small graphene oxide sheet/polyvinylidene fluoride bilayer actuator with large and rapid responses to multiple stimuli. Nanoscale, 2017, 9, 17465-17470.	2.8	65
88	Arbitrary waveform AC line filtering applicable to hundreds of volts based on aqueous electrochemical capacitors. Nature Communications, 2019, 10, 2855.	5.8	65
89	Grapheneâ€Based Organic Electrochemical Capacitors for AC Line Filtering. Advanced Energy Materials, 2017, 7, 1700591.	10.2	64
90	Antimony-Doped Tin Oxide Nanorods as a Transparent Conducting Electrode for Enhancing Photoelectrochemical Oxidation of Water by Hematite. ACS Applied Materials & Interfaces, 2014, 6, 5494-5499.	4.0	63

#	Article	IF	CITATIONS
91	Production of plant natural products through engineered Yarrowia lipolytica. Biotechnology Advances, 2020, 43, 107555.	6.0	62
92	Synthesis and electrochemical applications of the composites of conducting polymers and chemically converted graphene. Electrochimica Acta, 2011, 56, 10737-10743.	2.6	60
93	Composite organogels of graphene and activated carbon for electrochemical capacitors. Journal of Materials Chemistry A, 2013, 1, 9196.	5.2	60
94	Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae. Bioresource Technology, 2018, 257, 339-343.	4.8	60
95	Electrosynthesis of graphene oxide/polypyrene composite films and their applications for sensing organic vapors. Journal of Materials Chemistry, 2012, 22, 8438.	6.7	59
96	Refactoring βâ€amyrin synthesis in <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> . AICHE Journal, 2015, 61, 3172-3179.	1.8	59
97	Gene repression via multiplex gRNA strategy in Y. lipolytica. Microbial Cell Factories, 2018, 17, 62.	1.9	57
98	Stress-driven dynamic regulation of multiple tolerance genes improves robustness and productive capacity of Saccharomyces cerevisiae in industrial lignocellulose fermentation. Metabolic Engineering, 2020, 61, 160-170.	3.6	57
99	Optically Active Supramolecular Complex Formed by Ionic Self-Assembly of Cationic Perylenediimide Derivative and Adenosine Triphosphate. Langmuir, 2008, 24, 43-48.	1.6	55
100	A water-soluble cationic oligopyrene derivative: Spectroscopic studies and sensing applications. Sensors and Actuators B: Chemical, 2009, 138, 563-571.	4.0	55
101	Tailoring the oxygenated groups of graphene hydrogels for high-performance supercapacitors with large areal mass loadings. Journal of Materials Chemistry A, 2018, 6, 6587-6594.	5.2	54
102	Biosynthesis of Plant Triterpenoid Saponins in Microbial Cell Factories. Journal of Agricultural and Food Chemistry, 2018, 66, 12155-12165.	2.4	54
103	2D perovskite microsheets for high-performance photodetectors. Journal of Materials Chemistry C, 2019, 7, 5353-5358.	2.7	54
104	Characterization of Raoultella planticola Rs-2 microcapsule prepared with a blend of alginate and starch and its release behavior. Carbohydrate Polymers, 2014, 110, 259-267.	5.1	53
105	Trace Level Co–N Doped Graphite Foams as High-Performance Self-Standing Electrocatalytic Electrodes for Hydrogen and Oxygen Evolution. ACS Catalysis, 2018, 8, 4637-4644.	5.5	53
106	Highly Ordered Graphene Solid: An Efficient Platform for Capacitive Sodium-Ion Storage with Ultrahigh Volumetric Capacity and Superior Rate Capability. ACS Nano, 2019, 13, 9161-9170.	7.3	53
107	Controlling Chemo- and Regioselectivity of a Plant P450 in Yeast Cell toward Rare Licorice Triterpenoid Biosynthesis. ACS Catalysis, 2020, 10, 4253-4260.	5.5	53
108	Optically Active Supramolecular Complexes of Water-Soluble Achiral Polythiophenes and Folic Acid: Spectroscopic Studies and Sensing Applications. Langmuir, 2008, 24, 12829-12835.	1.6	51

#	Article	IF	CITATIONS
109	Efficient room-temperature production of high-quality graphene by introducing removable oxygen functional groups to the precursor. Chemical Science, 2019, 10, 1244-1253.	3.7	51
110	Room-temperature fabrication of highly oriented ZnO nanoneedle arrays by anodization of zinc foil. Nanotechnology, 2006, 17, 4936-4940.	1.3	50
111	Biocontrol of Rhizoctonia solani via Induction of the Defense Mechanism and Antimicrobial Compounds Produced by Bacillus subtilis SL-44 on Pepper (Capsicum annuum L.). Frontiers in Microbiology, 2019, 10, 2676.	1.5	50
112	Graphene oxide in aqueous and nonaqueous media: Dispersion behaviour and solution chemistry. Carbon, 2020, 158, 568-579.	5.4	50
113	Advances in mechanisms and modifications for rendering yeast thermotolerance. Journal of Bioscience and Bioengineering, 2016, 121, 599-606.	1.1	49
114	Direct and efficient xylitol production from xylan by Saccharomyces cerevisiae through transcriptional level and fermentation processing optimizations. Bioresource Technology, 2013, 149, 413-419.	4.8	48
115	A General Route to Robust Nacre-Like Graphene Oxide Films. ACS Applied Materials & Interfaces, 2015, 7, 15010-15016.	4.0	48
116	Perspective on Biotransformation and <i>De Novo</i> Biosynthesis of Licorice Constituents. Journal of Agricultural and Food Chemistry, 2017, 65, 11147-11156.	2.4	48
117	Engineering Saccharomyces cerevisiae for high yield production of α-amyrin via synergistic remodeling of α-amyrin synthase and expanding the storage pool. Metabolic Engineering, 2020, 62, 72-83.	3.6	48
118	Graphene membranes with tuneable nanochannels by intercalating self-assembled porphyrin molecules for organic solvent nanofiltration. Carbon, 2017, 124, 263-270.	5.4	46
119	Fibrous strain sensor with ultra-sensitivity, wide sensing range, and large linearity for full-range detection of human motion. Nanoscale, 2018, 10, 17512-17519.	2.8	46
120	Chemically modified graphene films with tunable negative Poisson's ratios. Nature Communications, 2019, 10, 2446.	5.8	46
121	Screening strains for directed biosynthesis of \hat{l}^2 -d-mono-glucuronide-glycyrrhizin and kinetics of enzyme production. Journal of Molecular Catalysis B: Enzymatic, 2006, 43, 63-67.	1.8	44
122	Recent advances in the biosynthesis strategies of nitrogen heterocyclic natural products. Natural Product Reports, 2022, 39, 139-162.	5.2	43
123	Suppressing the Selfâ€Discharge of Supercapacitors by Modifying Separators with an Ionic Polyelectrolyte. Advanced Materials Interfaces, 2018, 5, 1701547.	1.9	42
124	Synthesis of CaCO3/graphene composite crystals for ultra-strong structural materials. RSC Advances, 2012, 2, 2154.	1.7	40
125	Productive Amyrin Synthases for Efficient α-Amyrin Synthesis in Engineered <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2018, 7, 2391-2402.	1.9	40
126	Analyte-induced aggregation of conjugated polyelectrolytes: role of the charged moieties and its sensing application. Chemical Communications, 2010, 46, 5094.	2.2	39

#	Article	IF	CITATIONS
127	Novel trends for producing plant triterpenoids in yeast. Critical Reviews in Biotechnology, 2019, 39, 618-632.	5.1	39
128	Toward the lowest energy consumption and emission in biofuel production: combination of ideal reactors and robust hosts. Current Opinion in Biotechnology, 2018, 50, 19-24.	3.3	38
129	Host–Guest Intercalation Chemistry in MXenes and Its Implications for Practical Applications. ACS Nano, 2021, 15, 15502-15537.	7.3	38
130	N-glycosylation enhances functional and structural stability of recombinant β-glucuronidase expressed in Pichia pastoris. Journal of Biotechnology, 2013, 164, 75-81.	1.9	37
131	Porphyrin-based graphene oxide frameworks with ultra-large d-spacings for the electrocatalyzation of oxygen reduction reaction. Physical Chemistry Chemical Physics, 2015, 17, 19538-19545.	1.3	37
132	Aligned three-dimensional microstructures of conducting polymer composites. Polymer, 2007, 48, 5259-5267.	1.8	36
133	Polypyrrole actuators with inverse opal structures. Journal of Materials Chemistry, 2009, 19, 1653.	6.7	36
134	Enhanced β-Amyrin Synthesis in <i>Saccharomyces cerevisiae</i> by Coupling An Optimal Acetyl-CoA Supply Pathway. Journal of Agricultural and Food Chemistry, 2019, 67, 3723-3732.	2.4	36
135	Transporter Engineering for Microbial Manufacturing. Biotechnology Journal, 2020, 15, e1900494.	1.8	35
136	Electrochemical Fabrication of a Memory Device Based on Conducting Polymer Nanocomposites. Journal of Physical Chemistry C, 2007, 111, 18392-18396.	1.5	34
137	Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices. Bioresource Technology, 2014, 170, 38-44.	4.8	34
138	High efficient production of plant flavonoids by microbial cell factories: Challenges and opportunities. Metabolic Engineering, 2022, 70, 143-154.	3.6	34
139	Simultaneously down-regulation of multiplex branch pathways using CRISPRi and fermentation optimization for enhancing β-amyrin production in Saccharomyces cerevisiae. Synthetic and Systems Biotechnology, 2019, 4, 79-85.	1.8	33
140	Layer-by-Layer Deposited Multilayer Films of Oligo(pyrenebutyric acid) and a Perylene Diimide Derivative:  Structure and Photovoltaic Properties. Langmuir, 2008, 24, 4380-4387.	1.6	32
141	Disassembly of conjugated polyelectrolyte aggregates and their application for colorimetric detection of surfactants in water. Chemical Communications, 2010, 46, 8639.	2.2	32
142	A high-performance platinum electrocatalyst loaded on a graphene hydrogel for high-rate methanol oxidation. Physical Chemistry Chemical Physics, 2014, 16, 10142.	1.3	32
143	Multilevel Defense System (MDS) Relieves Multiple Stresses for Economically Boosting Ethanol Production of Industrial <i>Saccharomyces cerevisiae</i> . ACS Energy Letters, 2020, 5, 572-582.	8.8	31
144	N-linked glycosylation influences on the catalytic and biochemical properties of Penicillium purpurogenum l²-d-glucuronidase. Journal of Biotechnology, 2012, 157, 399-404.	1.9	30

#	Article	IF	CITATIONS
145	Efficient production of glycyrrhetic acid 3-O-mono-β-d-glucuronide by whole-cell biocatalysis in an ionic liquid/buffer biphasic system. Process Biochemistry, 2012, 47, 908-913.	1.8	30
146	Improving the thermo-tolerance of yeast base on the antioxidant defense system. Chemical Engineering Science, 2018, 175, 335-342.	1.9	30
147	A Largeâ€Scale Graphene–Bimetal Film Electrode with an Ultrahigh Mass Catalytic Activity for Durable Water Splitting. Advanced Energy Materials, 2018, 8, 1800403.	10.2	29
148	Pathway engineering in yeast for synthesizing the complex polyketide bikaverin. Nature Communications, 2020, 11, 6197.	5.8	29
149	Intelligent Microbial Heat-Regulating Engine (IMHeRE) for Improved Thermo-Robustness and Efficiency of Bioconversion. ACS Synthetic Biology, 2016, 5, 312-320.	1.9	28
150	Utilization of rare codon-rich markers for screening amino acid overproducers. Nature Communications, 2018, 9, 3616.	5.8	28
151	Supramolecular quantum dots as biodegradable nano-probes for upconversion-enabled bioimaging. Chemical Communications, 2015, 51, 13201-13204.	2.2	27
152	Simulated Microgravity Affects Growth of Escherichia coli and Recombinant β-d-Glucuronidase Production. Applied Biochemistry and Biotechnology, 2010, 162, 654-661.	1.4	26
153	Synthesis and characterization of slowâ€release nitrogen fertilizer with water absorbency: Based on poly(acrylic acidâ€acrylic amide)/Naâ€bentonite. Journal of Applied Polymer Science, 2012, 126, 1687-1697.	1.3	26
154	Disassembly-driven colorimetric and fluorescent sensor for anionic surfactants in water based on a conjugated polyelectrolyte/dye complex. Soft Matter, 2011, 7, 6873.	1.2	25
155	Structure-guided engineering of the substrate specificity of a fungal β-glucuronidase toward triterpenoid saponins. Journal of Biological Chemistry, 2018, 293, 433-443.	1.6	25
156	Overproduction of squalene synergistically downregulates ethanol production in Saccharomyces cerevisiae. Chemical Engineering Science, 2016, 152, 370-380.	1.9	24
157	Biosynthesis of Glycyrrhetinic Acid-3- <i>O</i> -monoglucose Using Glycosyltransferase UGT73C11 from <i>Barbarea vulgaris</i> . Industrial & Engineering Chemistry Research, 2017, 56, 14949-14958.	1.8	24
158	Construction of ajmalicine and sanguinarine de novo biosynthetic pathways using stable integration sites in yeast. Biotechnology and Bioengineering, 2022, 119, 1314-1326.	1.7	24
159	Electrosynthesis of free-standing poly(para-phenylene) films in mixed electrolytes of boron trifluoride diethyl etherate and trifluoroacetic acid on stainless steel electrode. Journal of Applied Polymer Science, 2002, 83, 2462-2466.	1.3	23
160	Tuning the pH profile of β-glucuronidase by rational site-directed mutagenesis for efficient transformation of glycyrrhizin. Applied Microbiology and Biotechnology, 2019, 103, 4813-4823.	1.7	22
161	Purification and characterization of a highly selective glycyrrhizin-hydrolyzing β-glucuronidase from Penicillium purpurogenum Li-3. Process Biochemistry, 2013, 48, 358-363.	1.8	21
162	Enhancing the Thermostability of β-Glucuronidase by Rationally Redesigning the Catalytic Domain Based on Sequence Alignment Strategy. Industrial & Engineering Chemistry Research, 2016, 55, 5474-5483.	1.8	21

#	Article	IF	CITATIONS
163	Engineering the thermostability of β-glucuronidase from Penicillium purpurogenum Li-3 by loop transplant. Applied Microbiology and Biotechnology, 2016, 100, 9955-9966.	1.7	21
164	Rhizospheric <i>Bacillus subtilis</i> Exhibits Biocontrol Effect against <i>Rhizoctonia solani</i> in Pepper <i>(Capsicum annuum)</i> . BioMed Research International, 2017, 2017, 1-9.	0.9	21
165	Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2018, 11, 107.	6.2	21
166	A Novel β-Glucuronidase from Talaromyces pinophilus Li-93 Precisely Hydrolyzes Glycyrrhizin into Glycyrrhetinic Acid 3- <i>O</i> -Mono-β- <scp>d</scp> -Glucuronide. Applied and Environmental Microbiology, 2018, 84, .	1.4	21
167	Mining of UDPâ€glucosyltrfansferases in licorice for controllable glycosylation of pentacyclic triterpenoids. Biotechnology and Bioengineering, 2020, 117, 3651-3663.	1.7	21
168	Metabolic engineering of Yarrowia lipolytica for liquiritigenin production. Chemical Engineering Science, 2021, 230, 116177.	1.9	21
169	Production of Liquid Fuel via Coliquefaction of Coal and Dunaliella tertiolecta in a Sub-/Supercritical Water–Ethanol System. Energy & Fuels, 2013, 27, 2619-2627.	2.5	20
170	Organic dispersions of graphene oxide with arbitrary concentrations and improved chemical stability. Chemical Communications, 2017, 53, 11005-11007.	2.2	20
171	Chemical Approach to Ultrastiff, Strong, and Environmentally Stable Graphene Films. ACS Applied Materials & Interfaces, 2018, 10, 5812-5818.	4.0	20
172	Electrosynthesis of poly(3,4-ethylenedioxythiophene) microcups in the aqueous solution of LiClO4 and tri(ethylene glycol). Polymer, 2006, 47, 4953-4958.	1.8	19
173	Optimization of degumming process for soybean oil by phospholipase B. Journal of Chemical Technology and Biotechnology, 2011, 86, 1081-1087.	1.6	19
174	A new application of aptamer: One-step purification and immobilization of enzyme from cell lysates for biocatalysis. Journal of Biotechnology, 2015, 203, 68-76.	1.9	19
175	Biosynthesis of glycyrrhetic acid 3-O-mono-β-d-glucuronide catalyzed by β-d-glucuronidase with enhanced bond selectivity in an ionic liquid/buffer biphasic system. Process Biochemistry, 2010, 45, 1916-1922.	1.8	18
176	Screening and optimization of low-cost medium for Pseudomonas putida Rs-198 culture using RSM. Brazilian Journal of Microbiology, 2014, 45, 1229-1237.	0.8	18
177	Confined Structures and Selective Mass Transport of Organic Liquids in Graphene Nanochannels. ACS Applied Materials & Interfaces, 2018, 10, 37014-37022.	4.0	18
178	Endophytes: the novel sources for plant terpenoid biosynthesis. Applied Microbiology and Biotechnology, 2021, 105, 4501-4513.	1.7	18
179	High-quality graphene films and nitrogen-doped organogels prepared from the organic dispersions of graphene oxide. Carbon, 2018, 129, 15-20.	5.4	18
180	Micro-nanoscale binary structured silver films fabricated by electrochemical deposition. Materials Chemistry and Physics, 2009, 114, 120-124.	2.0	17

#	Article	IF	CITATIONS
181	Computation-Aided Rational Deletion of C-Terminal Region Improved the Stability, Activity, and Expression Level of GH2 β-Glucuronidase. Journal of Agricultural and Food Chemistry, 2018, 66, 11380-11389.	2.4	17
182	Maximization of Spatial Charge Density: An Approach to Ultrahigh Energy Density of Capacitive Charge Storage. Angewandte Chemie, 2020, 132, 14649-14657.	1.6	17
183	Endophytic fungal diversity and space-time dynamics in sugar beet. European Journal of Soil Biology, 2016, 77, 77-85.	1.4	16
184	Mining of Sucrose Synthases from <i>Glycyrrhiza uralensis</i> and Their Application in the Construction of an Efficient UDP-Recycling System. Journal of Agricultural and Food Chemistry, 2019, 67, 11694-11702.	2.4	16
185	Resistance mechanisms and reprogramming of microorganisms for efficient biorefinery under multiple environmental stresses. Synthetic and Systems Biotechnology, 2019, 4, 92-98.	1.8	16
186	Enhanced Recombinant Protein Production Under Special Environmental Stress. Frontiers in Microbiology, 2021, 12, 630814.	1.5	16
187	Mining and design of biosensors for engineering microbial cell factory. Current Opinion in Biotechnology, 2022, 75, 102694.	3.3	16
188	Electrochemical Fabrication of Superhydrophobic Surfaces on Metal and Semiconductor Substrates. Journal of Adhesion Science and Technology, 2008, 22, 1819-1839.	1.4	15
189	Efficient biosynthesis of glycyrrhetic acid 3-O-mono-β-d-glucuronide (GAMG) in water-miscible ionic liquid by immobilized whole cells of Penicillium purpurogenum Li-3 in alginate gel. Chemical Engineering Science, 2014, 106, 136-143.	1.9	15
190	Properties and structures of β-glucuronidases with different transformation types of glycyrrhizin. RSC Advances, 2015, 5, 68345-68350.	1.7	15
191	"Pottery―of Porous Graphene Materials. Advanced Electronic Materials, 2015, 1, 1500004.	2.6	15
192	Design and construction of short synthetic terminators for β-amyrin production in Saccharomyces cerevisiae. Biochemical Engineering Journal, 2019, 146, 105-116.	1.8	15
193	Layer-by-layer deposited multilayer films of water soluble polythiophene derivative and gold nanoparticles exhibiting photoresponsive properties. Nanotechnology, 2007, 18, 185707.	1.3	14
194	Engineering of the terpenoid pathway in Saccharomyces cerevisiae co-overproduces squalene and the non-terpenoid compound oleic acid. Chemical Engineering Science, 2016, 152, 457-467.	1.9	14
195	Construction of a CaHPO4-PGUS1 hybrid nanoflower through protein-inorganic self-assembly, and its application in glycyrrhetinic acid 3-O-mono-β-d-glucuronide preparation. Frontiers of Chemical Science and Engineering, 2019, 13, 554-562.	2.3	14
196	Regulating Strategies for Producing Carbohydrate Active Enzymes by Filamentous Fungal Cell Factories. Frontiers in Bioengineering and Biotechnology, 2020, 8, 691.	2.0	14
197	Collaborative subcellular compartmentalization to improve GPP utilization and boost sabinene accumulation in Saccharomyces cerevisiae. Biochemical Engineering Journal, 2020, 164, 107768.	1.8	14
198	Efflux Transporters' Engineering and Their Application in Microbial Production of Heterologous Metabolites. ACS Synthetic Biology, 2021, 10, 646-669.	1.9	14

#	Article	IF	CITATIONS
199	Electrochemical fabrication of p-poly(3-methylthiophene)/n-silicon solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1811-1815.	3.0	13
200	Flexible Sandwich Photodetectors Based on Thick Polythiophene Films. Journal of Physical Chemistry C, 2009, 113, 7411-7415.	1.5	13
201	Enhancing Stress-Resistance for Efficient Microbial Biotransformations by Synthetic Biology. Frontiers in Bioengineering and Biotechnology, 2014, 2, 44.	2.0	13
202	Sequence editing strategy for improving performance of β-glucuronidase from Aspergillus terreus. Chemical Engineering Science, 2017, 167, 145-153.	1.9	13
203	Engineered Saccharomyces cerevisiae for the de novo synthesis of the aroma compound longifolene. Chemical Engineering Science, 2020, 226, 115799.	1.9	13
204	Photoresponsive properties of multilayers of conductive polymer and CdSe nanoparticles. Solar Energy Materials and Solar Cells, 2008, 92, 543-549.	3.0	11
205	Enhancement of recombinant βâ€ <scp>D</scp> â€glucuronidase production under lowâ€shear modeled microgravity in <i>Pichia pastoris</i> . Journal of Chemical Technology and Biotechnology, 2011, 86, 505-511.	1.6	11
206	Isolation and characterization of three fungi with the potential of transforming glycyrrhizin. World Journal of Microbiology and Biotechnology, 2013, 29, 781-788.	1.7	11
207	Immobilization of purified \hat{l}^2 -glucuronidase on ZnO nanoparticles for efficient biotransformation of glycyrrhizin in ionic liquid/buffer biphasic system. Chemical Engineering Science, 2017, 162, 332-340.	1.9	11
208	Galactosylation of Monosaccharide Derivatives of Glycyrrhetinic Acid by UDP-Glycosyltransferase GmSGT2 from Glycine max. Journal of Agricultural and Food Chemistry, 2020, 68, 8580-8588.	2.4	11
209	Intelligent microbial cell factory with genetic pH shooting (GPS) for cell self-responsive base/acid regulation. Microbial Cell Factories, 2020, 19, 202.	1.9	11
210	Separation and purification of plant terpenoids from biotransformation. Engineering in Life Sciences, 2021, 21, 724-738.	2.0	11
211	Effects of a Non-Conservative Sequence on the Properties of β-glucuronidase from Aspergillus terreus Li-20. PLoS ONE, 2012, 7, e30998.	1.1	10
212	Novel helper factors influencing recombinant protein production in Pichia pastoris based on proteomic analysis under simulated microgravity. Applied Microbiology and Biotechnology, 2015, 99, 653-665.	1.7	10
213	Intrinsic mechanical properties of graphene oxide films: Strain characterization and the gripping effects. Carbon, 2017, 118, 467-474.	5.4	10
214	Bioengineering oligomerization and monomerization of enzymes: learning from natural evolution to matching the demands for industrial applications. Critical Reviews in Biotechnology, 2020, 40, 231-246.	5.1	10
215	Recent advances in engineering of microbial cell factories for intelligent pH regulation and tolerance. Biotechnology Journal, 2021, 16, e2100151.	1.8	10
216	Electrochemical Biosensing Based on Graphene Modified Electrodes. Acta Chimica Sinica, 2014, 72, 319.	0.5	10

#	Article	IF	CITATIONS
217	Pyrenyl Excimers Induced by the Crystallization of POSS Moieties: Spectroscopic Studies and Sensing Applications. ChemPhysChem, 2008, 9, 1908-1913.	1.0	9
218	Design of Glyco-Linkers at Multiple Structural Levels to Modulate Protein Stability. Journal of Physical Chemistry Letters, 2018, 9, 4638-4645.	2.1	9
219	Regio- and stereoselectivity in the CYP450 _{BM3} -catalyzed hydroxylation of complex terpenoids: a QM/MM study. Physical Chemistry Chemical Physics, 2020, 22, 21696-21706.	1.3	9
220	An intelligent film actuator with multi-level deformation behaviour. Nanoscale Horizons, 2020, 5, 1226-1232.	4.1	9
221	Advances in production and structural derivatization of the promising molecule ursolic acid. Biotechnology Journal, 2021, 16, e2000657.	1.8	9
222	O-glycosyltransferases from Homo sapiens contributes to the biosynthesis of Glycyrrhetic Acid 3-O-mono-β-D-glucuronide and Glycyrrhizin in Saccharomyces cerevisiae. Synthetic and Systems Biotechnology, 2021, 6, 173-179.	1.8	9
223	Transcriptional Profiling of Protein Expression Related Genes of Pichia pastoris under Simulated Microgravity. PLoS ONE, 2011, 6, e26613.	1.1	9
224	Transporter Engineering in Microbial Cell Factory Boosts Biomanufacturing Capacity. Biodesign Research, 2022, 2022, .	0.8	9
225	Enhanced production of β-glucuronidase from Penicillium purpurogenum Li-3 by optimizing fermentation and downstream processes. Frontiers of Chemical Science and Engineering, 2015, 9, 501-510.	2.3	8
226	Enhancing the thermostability of β-glucuronidase from T. pinophilus enables the biotransformation of glycyrrhizin at elevated temperature. Chemical Engineering Science, 2019, 204, 91-98.	1.9	8
227	Omics Analysis Reveals the Mechanism of Enhanced Recombinant Protein Production Under Simulated Microgravity. Frontiers in Bioengineering and Biotechnology, 2020, 8, 30.	2.0	8
228	Title is missing!. Biotechnology Letters, 2002, 24, 407-412.	1.1	7
229	A structured kinetic model for suspension cultures of Taxus chinensis var. mairei induced by an oligosaccharide from Fusarium oxysporum. Biotechnology Letters, 2003, 25, 1335-1343.	1.1	7
230	Advances in bioprocessing for efficient bio manufacture. RSC Advances, 2015, 5, 52444-52451.	1.7	7
231	Enhanced yeast surface display of βâ€glucuronidase using dual anchor motifs for highâ€ŧemperature glycyrrhizin hydrolysis. AICHE Journal, 2019, 65, e16629.	1.8	7
232	Antimicrobial Phenolic Compounds from Anabasis Aphylla L. Natural Product Communications, 2009, 4, 1934578X0900400.	0.2	6
233	Diversity and space–time dynamics of endophytic archaea from sugar beet in the north slope of Tianshan Mountain revealed by 454 pyrosequencing and T-RFLP. World Journal of Microbiology and Biotechnology, 2015, 31, 1031-1039.	1.7	6
234	Construction of thermo-tolerant yeast based on an artificial protein quality control system (APQC) to improve the production of bio-ethanol. Chemical Engineering Science, 2018, 177, 410-416.	1.9	6

0

#	Article	IF	CITATIONS
235	Novel catalytic glycosylation of Glycyrrhetinic acid by UDP-glycosyltransferases from Bacillus subtilis. Biochemical Engineering Journal, 2020, 162, 107723.	1.8	6
236	Elucidating Adhesion Behaviors and the Interfacial Interaction Mechanism between Plant Probiotics and Modified Bentonite Carriers. ACS Sustainable Chemistry and Engineering, 2021, 9, 8125-8135.	3.2	6
237	Effect of Free and Encapsulated <i>Raoultella Planticola</i> Rs-2 on Cotton Growth Promotion Under Salt Stress. Journal of Plant Nutrition, 2014, 37, 1187-1201.	0.9	5
238	Microbial Cell Factory for Efficiently Synthesizing Plant Natural Products via Optimizing the Location and Adaptation of Pathway on Genome Scale. Frontiers in Bioengineering and Biotechnology, 2020, 8, 969.	2.0	5
239	Plant-beneficial functions and interactions of Bacillus subtilis SL-44 and Enterobacter cloacae Rs-2 in co-culture by transcriptomics analysis. Environmental Science and Pollution Research, 2021, 28, 56333-56344.	2.7	5
240	Engineered microorganisms and enzymes for efficiently synthesizing plant natural products. Chinese Journal of Chemical Engineering, 2021, 30, 62-73.	1.7	4
241	7â€ʿdehydrocholesterol suppresses melanoma cell proliferation and invasion via Akt1/NFâ€ʿκB signaling. Oncology Letters, 2020, 20, 1-1.	0.8	4
242	Molecular study on the role of vacuolar transporters in glycyrrhetinic acid production in engineered Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183890.	1.4	4
243	Self-assembly of insulated molecular wires of a watersoluble cationic PPV and anionic dendrons. Science Bulletin, 2009, 54, 2451-2456.	1.7	3
244	De Novo Synthesis of Plant Natural Products in Yeast. , 2019, , .		3
245	Identification of effective membrane efflux transporters against β â€amyrin through molecular docking approach. Journal of Chemical Technology and Biotechnology, 2019, 94, 2869-2875.	1.6	3
246	Visualized and precise design of artificial small RNAs for regulating T7 RNA polymerase and enhancing recombinant protein folding in Escherichia coli. Synthetic and Systems Biotechnology, 2016, 1, 265-270.	1.8	2
247	Improving the activity and thermostability of GH2 βâ€glucuronidases via domain reassembly. Biotechnology and Bioengineering, 2021, 118, 1962-1972.	1.7	2
248	Refining Metabolic Mass Transfer for Efficient Biosynthesis of Plant Natural Products in Yeast. Frontiers in Bioengineering and Biotechnology, 2021, 9, 633741.	2.0	2
249	Biochemical engineering in China. Reviews in Chemical Engineering, 2019, 35, 929-993.	2.3	1
250	Biomimetic Graphite Foils with High Foldability and Conductivity. Small Methods, 2019, 3, 1800282.	4.6	1
251	In-silico screening of potential target transporters for glycyrrhetinic acid (GA) via deep learning prediction of drug-target interactions. Biochemical Engineering Journal, 2022, 181, 108375.	1.8	1

Pentose Phosphate Pathway and Its Metabolic Engineering Applications. , 2018, , 167-186.

#	Article	IF	CITATIONS
253	Editorial: Development and Application of Novel Genome Engineering Tools in Microbial Biotechnology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 621851.	2.0	0