Krishna Prasad Madasu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3266620/publications.pdf

Version: 2024-02-01

24 papers 116 citations

1477746 6 h-index 9 g-index

24 all docs

24 docs citations

times ranked

24

49 citing authors

#	Article	IF	CITATIONS
1	Steady rotation of a composite sphere in a concentric spherical cavity. Acta Mechanica Sinica/Lixue Xuebao, 2012, 28, 653-658.	1.5	14
2	Wall effects on viscous fluid spheroidal droplet in a micropolar fluid spheroidal cavity. European Journal of Mechanics, B/Fluids, 2017, 65, 312-325.	1.2	11
3	Creeping flow past a porous approximate sphere – Stress jump boundary condition. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2011, 91, 824-831.	0.9	7
4	Creeping motion of a porous approximate sphere with an impermeable core in a spherical container. European Journal of Mechanics, B/Fluids, 2012, 36, 104-114.	1.2	7
5	Slow Steady Rotation of an Approximate Sphere in an Approximate Spherical Container with Slip Surfaces. International Journal of Applied and Computational Mathematics, 2017, 3, 987-999.	0.9	7
6	Impact of magnetic field on flow past cylindrical shell using cell model. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	0.8	7
7	Magnetohydrodynamic creeping flow around a weakly permeable spherical particle in cell models. Pramana - Journal of Physics, 2020, 94, 1 .	0.9	6
8	Influence of MHD on micropolar fluid flow past a sphere implanted in porous media. Indian Journal of Physics, 2021, 95, 1175-1183.	0.9	6
9	SLOW STEADY ROTATION OF A POROUS SPHERE IN A SPHERICAL CONTAINER. Journal of Porous Media, 2012, 15, 1105-1110.	1.0	6
10	Steady Rotation of Micropolar Fluid Sphere in Concentric Spherical Container. Procedia Engineering, 2015, 127, 469-475.	1.2	5
11	Steady Viscous Flow Around a Permeable Spheroidal Particle. International Journal of Applied and Computational Mathematics, 2019, 5, 1.	0.9	5
12	Axisymmetric creeping flow past a porous approximate sphere with an impermeable core. European Physical Journal Plus, 2013, 128, 1.	1.2	4
13	Stokes flow of micropolar fluid past a viscous fluid spheroid with non-zero boundary condition for microrotation. Sadhana - Academy Proceedings in Engineering Sciences, 2016, 41, 1463-1472.	0.8	4
14	MHD Viscous Flow Past a Weakly Permeable Cylinder Using Happel and Kuwabara Cell Models. Iranian Journal of Science and Technology, Transaction A: Science, 2020, 44, 1063-1073.	0.7	4
15	CREEPING FLOW PAST A POROUS APPROXIMATELY SPHERICAL SHELL: STRESS JUMP BOUNDARY CONDITION. ANZIAM Journal, 2011, 52, 289-300.	0.3	3
16	Cell models for viscous fluid past a micropolar fluid spheroidal droplet. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	0.8	3
17	Creeping flow of fluid sphere contained in a spherical envelope: magnetic effect. SN Applied Sciences, 2019, 1, 1.	1.5	3
18	Effect of magnetic field on the slow motion of a porous spheroid: Brinkman's model. Archive of Applied Mechanics, 2021, 91, 1739-1755.	1.2	3

#	Article	IF	CITATIONS
19	Slow Motion Past a Spheroid Implanted in a Brinkman Medium : Slip Condition. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	0.9	3
20	Stokes Flow of Viscous Fluid Past a Micropolar Fluid Spheroid. Advances in Applied Mathematics and Mechanics, 2017, 9, 1076-1093.	0.7	2
21	Slow Steady Flow Past a Porous Cylinder with Radially Varying Permeability Using Cell Models. International Journal of Applied and Computational Mathematics, 2019, 5, 1.	0.9	2
22	Flow past composite cylindrical shell of porous layer with a liquid core: magnetic effect. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	0.8	2
23	Drag force of a porous particle moving axisymmetrically in a closed cavity of micropolar fluid. Journal of Applied Mathematics and Computational Mechanics, 2019, 18, 41-51.	0.3	2
24	Axisymmetric Stokes flow past a composite spheroidal shell of immiscible fluids. European Physical Journal Plus, 2017, 132, 1.	1.2	O