Nemat Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3266612/publications.pdf

Version: 2024-02-01

19	632	14	18
papers	citations	h-index	g-index
20	20	20	1114
all docs	docs citations	times ranked	citing authors

#	Article	lF	Citations
1	Neurotrophins and Neuropathic Pain: Role in Pathobiology. Molecules, 2015, 20, 10657-10688.	3.8	145
2	Multiple sclerosis-induced neuropathic pain: pharmacological management and pathophysiological insights from rodent EAE models. Inflammopharmacology, 2014, 22, 1-22.	3.9	98
3	Pharmacological inhibition of the NLRP3 inflammasome as a potential target for multiple sclerosis induced central neuropathic pain. Inflammopharmacology, 2018, 26, 77-86.	3.9	62
4	Anti-inflammatory activities of Taxusabietane A isolated from Taxus wallichiana Zucc Fìtoterapìâ, 2011, 82, 1003-1007.	2.2	48
5	Discovery and molecular docking of quinolyl-thienyl chalcones as anti-angiogenic agents targeting VEGFR-2 tyrosine kinase. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 942-944.	2.2	42
6	Structural insights to investigate Conypododiol as a dual cholinesterase inhibitor from Asparagus adscendens. FA¬toterapìâ, 2010, 81, 1020-1025.	2.2	34
7	Establishment and characterization of an optimized mouse model of multiple sclerosis-induced neuropathic pain using behavioral, pharmacologic, histologic and immunohistochemical methods. Pharmacology Biochemistry and Behavior, 2014, 126, 13-27.	2.9	34
8	Antiallodynic effects of alpha lipoic acid in an optimized <scp>RR</scp> â€ <scp>EAE</scp> mouse model of <scp>MS</scp> â€neuropathic pain are accompanied by attenuation of upregulated <scp>BDNF</scp> â€TrkBâ€ <scp>ERK</scp> signaling in the dorsal horn of the spinal cord. Pharmacology Research and Perspectives, 2015, 3, e00137.	2.4	32
9	Analgesic and antiinflammatory activities of taxoids from <i>Taxus wallichiana</i> Zucc Phytotherapy Research, 2012, 26, 552-556.	5 . 8	28
10	Analgesic and anti-inflammatory activities of 11-O-galloylbergenin. Journal of Ethnopharmacology, 2010, 131, 502-504.	4.1	22
11	The Somatostatin Receptor-4 Agonist J-2156 Alleviates Mechanical Hypersensitivity in a Rat Model of Breast Cancer Induced Bone Pain. Frontiers in Pharmacology, 2018, 9, 495.	3 . 5	17
12	Attenuation of the Infiltration of Angiotensin II Expressing CD3+ T-Cells and the Modulation of Nerve Growth Factor in Lumbar Dorsal Root Ganglia – A Possible Mechanism Underpinning Analgesia Produced by EMA300, An Angiotensin II Type 2 (AT2) Receptor Antagonist. Frontiers in Molecular Neuroscience, 2017, 10, 389.	2.9	16
13	Antimicrobial activities of Conyzolide and Conyzoflavone from <i>Conyza canadensis</i> Enzyme Inhibition and Medicinal Chemistry, 2011, 26, 468-471.	5.2	14
14	Molecular simulations probing Kushecarpin A as a new lipoxygenase inhibitor. Fìtoterapìâ, 2011, 82, 1008-1011.	2.2	14
15	Post-COVID Opsoclonus Myoclonus Syndrome: A Case Report From Pakistan. Frontiers in Neurology, 2021, 12, 672524.	2.4	14
16	J-2156, a somatostatin receptor type 4 agonist, alleviates mechanical hyperalgesia in a rat model of chronic low back pain. Biomedicine and Pharmacotherapy, 2019, 117, 109056.	5.6	8
17	Design, synthesis and evaluation of alpha lipoic acid derivatives to treat multiple sclerosis-associated central neuropathic pain. Bioorganic and Medicinal Chemistry, 2022, 69, 116889.	3.0	3
18	Characterisation of a rat model of mechanical low back pain at an advanced stage using immunohistochemical methods. Clinical and Experimental Pharmacology and Physiology, 2021, 48, 96-106.	1.9	1

#	Article	IF	CITATIONS
19	Comparative studies of glial fibrillary acidic protein and brainâ€derived neurotrophic factor expression in two transgenic mouse models of Alzheimer's disease. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 1740-1750.	1.9	O