
## Alexander Neaman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3266498/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Global issues in setting legal limits on soil metal contamination: A case study of Chile. Chemosphere, 2022, 290, 133404.                                                                                                  | 8.2 | 15        |
| 2  | Challenges in Reducing Phytotoxicity of Metals in Soils Affected by Non-Ferrous Smelter Operations.<br>Geography, Environment, Sustainability, 2022, 15, 112-121.                                                          | 1.3 | 1         |
| 3  | Microbial responses are unreliable indicators of copper ecotoxicity in soils contaminated by mining activities. Chemosphere, 2022, 300, 134517.                                                                            | 8.2 | 6         |
| 4  | The Prosocial Driver of Ecological Behavior: The Need for an Integrated Approach to Prosocial and Environmental Education. Sustainability, 2022, 14, 4202.                                                                 | 3.2 | 6         |
| 5  | Photosynthetic apparatus features of Nuphar lutea and Nymphaea alba floating leaves can affect their<br>redistribution. Flora: Morphology, Distribution, Functional Ecology of Plants, 2022, 292, 152080.                  | 1.2 | 1         |
| 6  | Choose your amendment wisely: Zero-valent iron nanoparticles offered no advantage over<br>microparticles in a laboratory study on metal immobilization in a contaminated soil. Applied<br>Geochemistry, 2022, 143, 105369. | 3.0 | 3         |
| 7  | Assessing and mapping urban soils as geochemical barriers for contamination by heavy metal(loid)s in<br>Moscow megapolis. Journal of Environmental Quality, 2021, 50, 22-37.                                               | 2.0 | 23        |
| 8  | Zinc Alleviates Copper Toxicity to Lettuce and Oat in Copper-Contaminated Soils. Journal of Soil<br>Science and Plant Nutrition, 2021, 21, 1229-1235.                                                                      | 3.4 | 16        |
| 9  | Rising Copper Exposure Effects on Nutrient Uptake in Two Species with Distinct Copper Tolerance.<br>Russian Journal of Plant Physiology, 2021, 68, 300-306.                                                                | 1.1 | 1         |
| 10 | Catholic religious identity, prosocial and pro-environmental behaviors, and connectedness to nature in Chile. Gaia, 2021, 30, 44-50.                                                                                       | 0.7 | 5         |
| 11 | The role of leaf litter as a protective barrier for copper-containing pesticides in orchard soils.<br>Environmental Science and Pollution Research, 2021, 28, 60913-60922.                                                 | 5.3 | 2         |
| 12 | Side effects of traditional pesticides on soil microbial respiration in orchards on the Russian Black<br>Sea coast. Chemosphere, 2021, 275, 130040.                                                                        | 8.2 | 7         |
| 13 | Thresholds of Metal and Metalloid Toxicity In Field-Collected Anthropogenically Contaminated Soils:<br>A Review. Geography, Environment, Sustainability, 2021, 14, 6-21.                                                   | 1.3 | 12        |
| 14 | The prosocial origin of sustainable behavior: A case study in the ecological domain. Global<br>Environmental Change, 2021, 69, 102312.                                                                                     | 7.8 | 23        |
| 15 | Gypsum soil amendment in metal-polluted soils—an added environmental hazard. Chemosphere, 2021,<br>281, 130889.                                                                                                            | 8.2 | 10        |
| 16 | Remnants of native forests support carnivore diversity in the vineyard landscapes of central Chile.<br>Oryx, 2021, 55, 227-234.                                                                                            | 1.0 | 10        |
| 17 | Teaching soil science: The impact of laboratory and field components on the knowledge and attitude<br>toward soil. Revista Brasileira De Ciencia Do Solo, 2021, 45, .                                                      | 1.3 | 1         |
| 18 | The Effect of Sealing on Soil Carbon Stocks in New Moscow. Springer Geography, 2020, , 29-36.                                                                                                                              | 0.4 | 2         |

Alexander Neaman

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Ornamental Plant Cultivation Using Vermiculite-Lizardite Mining Waste in the Industrial Zone of the Subarctic. Springer Geography, 2020, , 199-204.                                                                                              | 0.4 | 3         |
| 20 | Advanced determination of the spatial gradient of human health risk and ecological risk from<br>exposure to As, Cu, Pb, and Zn in soils near the Ventanas Industrial Complex (PuchuncavÃ, Chile).<br>Environmental Pollution, 2020, 258, 113488. | 7.5 | 37        |
| 21 | Which soil Cu pool governs phytotoxicity in field-collected soils contaminated by copper smelting activities in central Chile?. Chemosphere, 2020, 242, 125176.                                                                                  | 8.2 | 24        |
| 22 | Root Elongation Method for the Quality Assessment of Metal-Polluted Soils: Whole Soil or<br>Soil-Water Extract?. Journal of Soil Science and Plant Nutrition, 2020, 20, 2294-2303.                                                               | 3.4 | 20        |
| 23 | Impact of Mother Plant Saline Stress on the Agronomical Quality of Pepper Seeds. Journal of Soil<br>Science and Plant Nutrition, 2020, 20, 2600-2605.                                                                                            | 3.4 | 2         |
| 24 | Feasibility of Metal(loid) Phytoextraction from Polluted Soils: The Need for Greater Scrutiny.<br>Environmental Toxicology and Chemistry, 2020, 39, 1469-1471.                                                                                   | 4.3 | 4         |
| 25 | An Emerging Frontier: Metal(loid) Soil Pollution Threat Under Global Climate Change. Environmental<br>Toxicology and Chemistry, 2020, 39, 1653-1654.                                                                                             | 4.3 | 5         |
| 26 | Human Health Risk Assessment from the Consumption of Vegetables Grown near a Copper Smelter in Central Chile. Journal of Soil Science and Plant Nutrition, 2020, 20, 1472-1479.                                                                  | 3.4 | 14        |
| 27 | Use of Zinc Carbonate Spiking to Obtain Phytotoxicity Thresholds Comparable to Those in<br>Fieldâ€Collected Soils. Environmental Toxicology and Chemistry, 2020, 39, 1790-1796.                                                                  | 4.3 | 4         |
| 28 | Role of Leaf Litter on the Incorporation of Copper-Containing Pesticides into Soils Under Fruit<br>Production: a Review. Journal of Soil Science and Plant Nutrition, 2020, 20, 990-1000.                                                        | 3.4 | 17        |
| 29 | Vermiculite-Lizardite Industrial Wastes Promote Plant Growth in a Peat Soil Affected by a Cu/Ni<br>Smelter: a Case Study at the Kola Peninsula, Russia. Journal of Soil Science and Plant Nutrition, 2020,<br>20, 1013-1018.                     | 3.4 | 8         |
| 30 | Analyzing Soil Metal Toxicity: Spiked or Field ontaminated Soils?. Environmental Toxicology and Chemistry, 2020, 39, 513-514.                                                                                                                    | 4.3 | 15        |
| 31 | Chilean regulations on metal-polluted soils: The need to advance from adapting foreign laws towards developing sovereign legislation. Environmental Research, 2020, 185, 109429.                                                                 | 7.5 | 18        |
| 32 | Evaluation of connected clonal growth of Solidago chilensis as an avoidance mechanism in copper-polluted soils. Chemosphere, 2019, 230, 303-307.                                                                                                 | 8.2 | 13        |
| 33 | Soil and indoor dust as environmental media of human exposure to As, Cd, Cu, and Pb near a copper smelter in central Chile. Journal of Trace Elements in Medicine and Biology, 2019, 54, 156-162.                                                | 3.0 | 32        |
| 34 | The effect of four calciumâ€based amendments on soil aggregate stability of two sandy topsoils.<br>Journal of Plant Nutrition and Soil Science, 2019, 182, 159-166.                                                                              | 1.9 | 10        |
| 35 | HUMAN EXPOSURE ASSESSMENT TO MERCURY THROUGH HAIR ANALYSIS IN COASTAL VILLAGES OF THE VALPARAISO REGION (CHILE). Journal of the Chilean Chemical Society, 2019, 64, 4480-4483.                                                                   | 1.2 | 7         |
| 36 | Comparison of exposure to trace elements through vegetable consumption between a mining area and<br>an agricultural area in central Chile. Environmental Science and Pollution Research, 2018, 25,<br>19114-19121.                               | 5.3 | 13        |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | COMPORTAMIENTO DE EVASIÓN Y REPRODUCCIÓN DE LA LOMBRIZ Eisenia foetida EN SUELOS AGRÀOLAS<br>IMPACTADOS POR ACTIVIDADES MINERAS. Revista Internacional De Contaminacion Ambiental, 2018, 34,<br>35-43. | 0.4 | 4         |
| 38 | Zinc alleviates copper toxicity to symbiotic nitrogen fixation in agricultural soil affected by copper mining in central Chile. Chemosphere, 2018, 209, 960-963.                                       | 8.2 | 19        |
| 39 | Assessment of revegetation of an acidic metal(loid)-polluted soils six years after the incorporation of lime with and without compost. Geoderma, 2018, 331, 81-86.                                     | 5.1 | 21        |
| 40 | Toward an Integrated Approach to Environmental and Prosocial Education. Sustainability, 2018, 10, 583.                                                                                                 | 3.2 | 54        |
| 41 | Advances on the determination of thresholds of Cu phytotoxicity in field-contaminated soils in central Chile. Environmental Pollution, 2017, 223, 146-152.                                             | 7.5 | 26        |
| 42 | Proposed modification to avoidance test with Eisenia fetida to assess metal toxicity in agricultural soils affected by mining activities. Ecotoxicology and Environmental Safety, 2017, 140, 230-234.  | 6.0 | 19        |
| 43 | Nitrification and nitrogen mineralization in agricultural soils contaminated by copper mining activities in Central Chile. Journal of Soil Science and Plant Nutrition, 2017, , 0-0.                   | 3.4 | 3         |
| 44 | CLONAL PROPAGATION OF THE AVOCADO: EFFECTS OF THE ROOTING STEP ON GRAFT UNION FORMATION AND DEVELOPMENT. Ciencia E Investigacion Agraria, 2016, 43, 6-6.                                               | 0.2 | 3         |
| 45 | Explaining the Ambiguous Relations Between Income, Environmental Knowledge, and Environmentally<br>Significant Behavior. Society and Natural Resources, 2016, 29, 628-632.                             | 1.9 | 46        |
| 46 | Human-Environment System Knowledge: A Correlate of Pro-Environmental Behavior. Sustainability, 2015, 7, 15510-15526.                                                                                   | 3.2 | 60        |
| 47 | Evaluación de la tolerancia al cobre de dos poblaciones de Oenothera picensis Phil. subsp. picensis<br>(Onagraceae). Gayana - Botanica, 2015, 72, 240-249.                                             | 0.2 | 4         |
| 48 | STABILITY OF ARSENIC DURING SOIL TREATMENT AND STORAGE. Journal of the Chilean Chemical Society, 2015, 60, 3045-3048.                                                                                  | 1.2 | 5         |
| 49 | Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile. Ecotoxicology and Environmental Safety, 2015, 122, 171-177.                     | 6.0 | 44        |
| 50 | Solubility, partitioning, and activity of copperâ€contaminated soils in a semiarid region. Journal of<br>Plant Nutrition and Soil Science, 2015, 178, 452-459.                                         | 1.9 | 26        |
| 51 | Thresholds of arsenic toxicity to Eisenia fetida in field-collected agricultural soils exposed to copper mining activities in Chile. Ecotoxicology and Environmental Safety, 2015, 122, 448-454.       | 6.0 | 27        |
| 52 | Effect of compost and biodegradable chelate addition on phytoextraction of copper by Oenothera picensis grown in Cu-contaminated acid soils. Chemosphere, 2014, 95, 111-115.                           | 8.2 | 25        |
| 53 | Modelo predictivo de la distribución espacial de cobre en suelos agrÃcolas de la cuenca del RÃo<br>Aconcagua, Chile. Investigaciones Geográficas, 2014, , 79.                                          | 0.1 | 1         |
| 54 | Development of an Analytical Method for Antimony Speciation in Vegetables by HPLC-Hydride<br>Generation-Atomic Fluorescence Spectrometry. Journal of AOAC INTERNATIONAL, 2012, 95, 1176-1182.          | 1.5 | 10        |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Effects of lime and compost on earthworm (Eisenia fetida) reproduction in copper and arsenic<br>contaminated soils from the PuchuncavÃ-Valley, Chile. Ecotoxicology and Environmental Safety, 2012,<br>80, 386-392. | 6.0  | 25        |
| 56 | Lime and Compost Promote Plant Re-Colonization of Metal-Polluted, Acidic Soils. International<br>Journal of Phytoremediation, 2012, 14, 820-833.                                                                    | 3.1  | 16        |
| 57 | Simultaneous immobilization of metals and arsenic in acidic polluted soils near a copper smelter in central Chile. Environmental Science and Pollution Research, 2012, 19, 1131-1143.                               | 5.3  | 22        |
| 58 | The Effects of Palygorskite on Chemical and Physico-Chemical Properties of Soils. Developments in Clay Science, 2011, , 325-349.                                                                                    | 0.5  | 8         |
| 59 | The effect of lime and compost amendments on the potential for the revegetation of metal-polluted, acidic soils. Geoderma, 2011, 166, 135-144.                                                                      | 5.1  | 56        |
| 60 | Biodegradable chelate enhances the phytoextraction of copper by Oenothera picensis grown in copper-contaminated acid soils. Chemosphere, 2011, 84, 490-496.                                                         | 8.2  | 30        |
| 61 | Amendments Promote the Development of <i>Lolium Perenne</i> in Soils Affected by Historical Copper<br>Smelting Operations. International Journal of Phytoremediation, 2011, 13, 552-566.                            | 3.1  | 21        |
| 62 | EFECTOS DEL ENCALADO Y LA FERTILIZACIÓN NITROGENADA SOBRE EL DESARROLLO DE Oenothera affinis<br>EN UN SUELO AFECTADO POR LA MINERÃA DEL COBRE. Revista De La Ciencia Del Suelo Y Nutricion Vegetal,<br>2010, 10, .  | 0.4  | 4         |
| 63 | Evaluación de la toxicidad de cobre en suelos a través de biomarcadores de estrés oxidativo en eisenia<br>foetida. Quimica Nova, 2010, 33, 566-570.                                                                 | 0.3  | 17        |
| 64 | Quantification and control of runoff and soil erosion on avocado orchards on ridges along<br>steep-hillslopes. Ciencia E Investigacion Agraria, 2010, 37, 113-123.                                                  | 0.2  | 12        |
| 65 | Organic Matter Reduces Copper Toxicity for the Earthworm Eisenia fetida in Soils from Mining Areas<br>in Central Chile. Chilean Journal of Agricultural Research, 2009, 69, .                                       | 1.1  | 10        |
| 66 | ADVANCES IN DIAGNOSIS OF IRON DEFICIENCY IN AVOCADO. Journal of Plant Nutrition, 2009, 33, 38-45.                                                                                                                   | 1.9  | 2         |
| 67 | Highly charged swelling mica reduces Cu bioavailability in Cu-contaminated soils. Environmental Pollution, 2009, 157, 12-16.                                                                                        | 7.5  | 11        |
| 68 | Copper mobility in contaminated soils of the PuchuncavÃ-valley, central Chile. Geoderma, 2009, 150,<br>359-366.                                                                                                     | 5.1  | 45        |
| 69 | Trace element associations with Fe- and Mn-oxides in soil nodules: Comparison of selective dissolution with electron probe microanalysis. Applied Geochemistry, 2008, 23, 778-782.                                  | 3.0  | 39        |
| 70 | Highly Charged Swelling Mica Reduces Free and Extractable Cu Levels in Cu-Contaminated Soils.<br>Environmental Science & Technology, 2008, 42, 9197-9202.                                                           | 10.0 | 28        |
| 71 | Acumulación de cobre en una comunidad vegetal afectada por contaminación minera en el valle de<br>PuchuncavÃ <del>,</del> Chile central. Revista Chilena De Historia Natural, 2008, 81, .                           | 1.2  | 15        |
| 72 | Comparison of Different Methods for Diagnosis of Iron Deficiency in Avocado. Journal of Plant<br>Nutrition, 2007, 30, 1097-1108.                                                                                    | 1.9  | 7         |

Alexander Neaman

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Reproducción de Eisenia foetida en suelos agrÃcolas de áreas mineras contaminadas por cobre y<br>arsénico. Pesquisa Agropecuaria Brasileira, 2007, 42, 435-441.                                       | 0.9 | 11        |
| 74 | Element mobility patterns record organic ligands in soils on early Earth. Geology, 2005, 33, 117.                                                                                                     | 4.4 | 75        |
| 75 | Possible use of the Sacalum (Yucatan) palygorskite as drilling muds. Applied Clay Science, 2004, 25, 121-124.                                                                                         | 5.2 | 95        |
| 76 | The effects of palygorskite on chemical and physico-chemical properties of soils: a review. Geoderma, 2004, 123, 297-303.                                                                             | 5.1 | 60        |
| 77 | Improved methods for selective dissolution of Mn oxides: applications for studying trace element associations. Applied Geochemistry, 2004, 19, 973-979.                                               | 3.0 | 99        |
| 78 | The effects of exchanged cation, compression, heating and hydration on textural properties of bulk bentonite and its corresponding purified montmorillonite. Applied Clay Science, 2003, 22, 153-168. | 5.2 | 115       |
| 79 | Nanomorphology of montmorillonite particles: Estimation of the clay edge sorption site density by<br>low-pressure gas adsorption and AFM observations. American Mineralogist, 2003, 88, 1989-1995.    | 1.9 | 150       |
| 80 | Kinetics of Hydrolysis of Some Palygorskite-Containing Soil Clays in Dilute Salt Solutions. Clays and<br>Clay Minerals, 2000, 48, 708-712.                                                            | 1.3 | 16        |
| 81 | Rheology of Mixed Palygorskite-Montmorillonite Suspensions. Clays and Clay Minerals, 2000, 48, 713-715.                                                                                               | 1.3 | 25        |
| 82 | Rheological Properties of Aqueous Suspensions of Palygorskite. Soil Science Society of America<br>Journal, 2000, 64, 427-436.                                                                         | 2.2 | 104       |
| 83 | Dispersion and migration of fine particles in two palygorskite-containing soils of the Jordan Valley.<br>Journal of Plant Nutrition and Soil Science, 2000, 163, 537-547.                             | 1.9 | 13        |
| 84 | Clay mineralogy as affecting disaggregation in some palygorskite containing soils of the Jordan and<br>Bet-She'an Valleys. Soil Research, 1999, 37, 913.                                              | 1.1 | 21        |
| 85 | FLOCCULATION OF HOMOIONIC SODIUM PALYGORSKITE, PALYGORSKITE-MONTMORILLONITE MIXTURES AND PALYGORSKITE CONTAINING SOIL CLAYS. Soil Science, 1999, 164, 914-921.                                        | 0.9 | 6         |