Allen L Robinson

List of Publications by Citations

Source: https://exaly.com/author-pdf/3266497/allen-l-robinson-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

238 76 20,032 137 h-index g-index citations papers 6.72 273 23,201 7.2 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
238	Evolution of organic aerosols in the atmosphere. <i>Science</i> , 2009 , 326, 1525-9	33.3	2767
237	Rethinking organic aerosols: semivolatile emissions and photochemical aging. <i>Science</i> , 2007 , 315, 1259	-63 3.3	1452
236	Coupled partitioning, dilution, and chemical aging of semivolatile organics. <i>Environmental Science & Environmental & Environm</i>	10.3	1073
235	A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 3303-3318	6.8	421
234	Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 1263-1277	6.8	381
233	A two-dimensional volatility basis set IPart 2: Diagnostics of organic-aerosol evolution. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 615-634	6.8	365
232	Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. <i>Geophysical Research Letters</i> , 2010 , 37, n/a-n/a	4.9	363
231	Assessment of methane emissions from the U.S. oil and gas supply chain. <i>Science</i> , 2018 , 361, 186-188	33.3	334
230	Brownness of organics in aerosols from biomass burning linked to their black carbon content. <i>Nature Geoscience</i> , 2014 , 7, 647-650	18.3	314
229	Atmospheric organic particulate matter: From smoke to secondary organic aerosol. <i>Atmospheric Environment</i> , 2009 , 43, 94-106	5.3	292
228	Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 7669-7686	6.8	287
227	Effects of dilution on fine particle mass and partitioning of semivolatile organics in diesel exhaust and wood smoke. <i>Environmental Science & Environmental &</i>	10.3	266
226	Positive and Negative Artifacts in Particulate Organic Carbon Measurements with Denuded and Undenuded Sampler Configurations Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program. <i>Aerosol Science and Technology</i> , 2004 , 38, 27-48	3.4	236
225	Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 7683-7693	6.8	231
224	Review of Urban Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle Emissions. <i>Environmental Science & Emp; Technology</i> , 2017 , 51, 1074-1093	10.3	229
223	Estimating the Secondary Organic Aerosol Contribution to PM2.5 Using the EC Tracer Method Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program. <i>Aerosol Science and Technology</i> , 2004 , 38, 140-155	3.4	222
222	Effects of gas particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations. <i>Journal of Geophysical Research</i> , 2008 , 113,		196

221	A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 291-313	4	185
220	Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber. <i>Environmental Science & Environmental Science & Environme</i>	10.3	181
219	Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 2: analysis of aerosol mass spectrometer data. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 2227-2240	6.8	168
218	Gas- and particle-phase primary emissions from in-use, on-road gasoline and diesel vehicles. <i>Atmospheric Environment</i> , 2014 , 88, 247-260	5.3	165
217	A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		159
216	Secondary organic aerosol formation from high-NO(x) photo-oxidation of low volatility precursors: n-alkanes. <i>Environmental Science & Environmental Sc</i>	10.3	156
215	Intermediate-volatility organic compounds: a large source of secondary organic aerosol. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	154
214	Source apportionment of molecular markers and organic aerosol. 3. Food cooking emissions. <i>Environmental Science & Environmental Science & Environment</i>	10.3	153
213	Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 10473-8	11.5	148
212	Reconciling divergent estimates of oil and gas methane emissions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 15597-602	11.5	145
211	Gas-particle partitioning of primary organic aerosol emissions: 3. Biomass burning. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 11,327-11,338	4.4	144
2 10	Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4). <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 9727-9754	6.8	142
209	Organic aerosol formation downwind from the Deepwater Horizon oil spill. <i>Science</i> , 2011 , 331, 1295-9	33.3	138
208	Secondary organic aerosol formation from intermediate-volatility organic compounds: cyclic, linear, and branched alkanes. <i>Environmental Science & Environmental & Env</i>	10.3	134
207	Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh supersite. <i>Atmospheric Environment</i> , 2004 , 38, 3127-3141	5.3	134
206	Comparison of Gasoline Direct-Injection (GDI) and Port Fuel Injection (PFI) Vehicle Emissions: Emission Certification Standards, Cold-Start, Secondary Organic Aerosol Formation Potential, and Potential Climate Impacts. <i>Environmental Science & Emp; Technology</i> , 2017 , 51, 6542-6552	10.3	132
205	Modeling semivolatile organic aerosol mass emissions from combustion systems. <i>Environmental Science & Environmental Science &</i>	10.3	132
204	Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 4661-4678	6.8	128

203	Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor. <i>Environmental Science & Environmental & Envir</i>	10.3	125
202	Pilot-Scale Investigation of the Influence of Coal B iomass Cofiring on Ash Deposition. <i>Energy & Energy Energy Energy</i> 2002, 16, 343-355	4.1	124
201	Effect of Peak Inert-Mode Temperature on Elemental Carbon Measured Using Thermal-Optical Analysis. <i>Aerosol Science and Technology</i> , 2006 , 40, 763-780	3.4	123
200	Source apportionment of molecular markers and organic aerosol1. Polycyclic aromatic hydrocarbons and methodology for data visualization. <i>Environmental Science & amp; Technology</i> , 2006 , 40, 7803-10	10.3	123
199	Fine particle emission factors from vehicles in a highway tunnel: Effects of fleet composition and season. <i>Atmospheric Environment</i> , 2006 , 40, 287-298	5.3	120
198	Sources of organic aerosol: Positive matrix factorization of molecular marker data and comparison of results from different source apportionment models. <i>Atmospheric Environment</i> , 2007 , 41, 9353-9369	5.3	116
197	Constraining the volatility distribution and gas-particle partitioning of combustion aerosols using isothermal dilution and thermodenuder measurements. <i>Environmental Science & Environmental & Envir</i>	10.3	113
196	Intermediate Volatility Organic Compound Emissions from On-Road Diesel Vehicles: Chemical Composition, Emission Factors, and Estimated Secondary Organic Aerosol Production. <i>Environmental Science & Environmental Science & </i>	10.3	112
195	Gas-particle partitioning of primary organic aerosol emissions: (1) Gasoline vehicle exhaust. <i>Atmospheric Environment</i> , 2013 , 77, 128-139	5.3	111
194	Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement results. <i>Environmental Science & Environmental Science & Environme</i>	10.3	110
193	Pittsburgh air quality study overview. Atmospheric Environment, 2004, 38, 3107-3125	5.3	106
192	Methane emissions from natural gas compressor stations in the transmission and storage sector: measurements and comparisons with the EPA greenhouse gas reporting program protocol. <i>Environmental Science & Environmental Sci</i>	10.3	105
191	Gas-particle partitioning of primary organic aerosol emissions: (2) diesel vehicles. <i>Environmental Science & Environmental Sc</i>	10.3	103
190	Updating the conceptual model for fine particle mass emissions from combustion systems. <i>Journal of the Air and Waste Management Association</i> , 2010 , 60, 1204-22	2.4	103
189	Secondary organic aerosol production from diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 4643-4659	6.8	102
188	Constructing a Spatially Resolved Methane Emission Inventory for the Barnett Shale Region. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	101
187	Is the gas-particle partitioning in alpha-pinene secondary organic aerosol reversible?. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	101
186	Methane Emissions from the Natural Gas Transmission and Storage System in the United States. <i>Environmental Science & Environmental Science & Environm</i>	10.3	99

(2005-2013)

185	Time scales for gas-particle partitioning equilibration of secondary organic aerosol formed from alpha-pinene ozonolysis. <i>Environmental Science & Environmental Science & Env</i>	10.3	99
184	Photochemical oxidation and changes in molecular composition of organic aerosol in the regional context. <i>Journal of Geophysical Research</i> , 2006 , 111,		98
183	Intermediate Volatility Organic Compound Emissions from On-Road Gasoline Vehicles and Small Off-Road Gasoline Engines. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	98
182	Local and Regional Secondary Organic Aerosol: Insights from a Year of Semi-Continuous Carbon Measurements at Pittsburgh. <i>Aerosol Science and Technology</i> , 2006 , 40, 861-872	3.4	96
181	Evolving mass spectra of the oxidized component of organic aerosol: results from aerosol mass spectrometer analyses of aged diesel emissions. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 1139-1152	6.8	95
180	Methane Emissions from Conventional and Unconventional Natural Gas Production Sites in the Marcellus Shale Basin. <i>Environmental Science & Environmental Science & Environment</i>	10.3	95
179	Source apportionment of molecular markers and organic aerosol. 2. Biomass smoke. <i>Environmental Science & Environmental Scienc</i>	10.3	94
178	Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 10,285	4.4	93
177	Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. <i>Scientific Reports</i> , 2017 , 7, 4926	4.9	92
176	Air pollutant emissions from the development, production, and processing of Marcellus Shale natural gas. <i>Journal of the Air and Waste Management Association</i> , 2014 , 64, 19-37	2.4	89
175	Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China. <i>Scientific Reports</i> , 2016 , 6, 28815	4.9	88
174	Intermediate-volatility organic compounds: a potential source of ambient oxidized organic aerosol. <i>Environmental Science & Environmental Science & En</i>	10.3	88
173	Mortality Risk and Fine Particulate Air Pollution in a Large, Representative Cohort of U.S. Adults. <i>Environmental Health Perspectives</i> , 2019 , 127, 77007	8.4	86
172	Cloud condensation nuclei activity of fresh primary and aged biomass burning aerosol. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 7285-7293	6.8	86
171	Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set. <i>Environmental Chemistry</i> , 2013 , 10, 151	3.2	85
170	Mass balance closure and the Federal Reference Method for PM2.5 in Pittsburgh, Pennsylvania. <i>Atmospheric Environment</i> , 2004 , 38, 3305-3318	5.3	85
169	Effect of Large Aspect Ratio of Biomass Particles on Carbon Burnout in a Utility Boiler. <i>Energy & Energy Fuels</i> , 2002 , 16, 1523-1532	4.1	85
168	Critical factors determining the variation in SOA yields from terpene ozonolysis: a combined experimental and computational study. <i>Faraday Discussions</i> , 2005 , 130, 295-309; discussion 363-86, 519-	-346	83

167	Effects of Intraparticle Heat and Mass Transfer on Biomass Devolatilization: Experimental Results and Model Predictions. <i>Energy & Devolations</i> , 2004, 18, 1021-1031	4.1	83
166	Effective rate constants and uptake coefficients for the reactions of organic molecular markers (n-alkanes, hopanes, and steranes) in motor oil and diesel primary organic aerosols with hydroxyl radicals. <i>Environmental Science & Environmental Environme</i>	10.3	82
165	Methane Emissions from United States Natural Gas Gathering and Processing. <i>Environmental Science & Environmental Science & En</i>	10.3	79
164	Contribution of motor vehicle emissions to organic carbon and fine particle mass in Pittsburgh, Pennsylvania: Effects of varying source profiles and seasonal trends in ambient marker concentrations. <i>Atmospheric Environment</i> , 2006 , 40, 8002-8019	5.3	78
163	Constraining Particle Evolution from Wall Losses, Coagulation, and Condensation-Evaporation in Smog-Chamber Experiments: Optimal Estimation Based on Size Distribution Measurements. Aerosol Science and Technology, 2008, 42, 1001-1015	3.4	77
162	Reducing secondary organic aerosol formation from gasoline vehicle exhaust. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6984-6989	11.5	73
161	Aerosol single scattering albedo dependence on biomass combustion efficiency: Laboratory and field studies. <i>Geophysical Research Letters</i> , 2014 , 41, 742-748	4.9	72
160	The influence of semi-volatile and reactive primary emissions on the abundance and properties of global organic aerosol. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 7727-7746	6.8	71
159	Photo-oxidation of low-volatility organics found in motor vehicle emissions: production and chemical evolution of organic aerosol mass. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	71
158	Assessment of potential carbon dioxide reductions due to biomass-coal cofiring in the United States. <i>Environmental Science & Environmental Science & </i>	10.3	71
157	Volatility of organic molecular markers used for source apportionment analysis: measurements and implications for atmospheric lifetime. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	70
156	Insights into the primaryEecondary and regionalEbcal contributions to organic aerosol and PM2.5 mass in Pittsburgh, Pennsylvania. <i>Atmospheric Environment</i> , 2007 , 41, 7414-7433	5.3	70
155	Fine particle mass monitoring with low-cost sensors: Corrections and long-term performance evaluation. <i>Aerosol Science and Technology</i> , 2020 , 54, 160-174	3.4	69
154	A naming convention for atmospheric organic aerosol. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 582	.5 65 839	9 68
153	Emission factor ratios, SOA mass yields, and the impact of vehicular emissions on SOA formation. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 2383-2397	6.8	67
152	Sources of atmospheric carbonaceous particulate matter in Pittsburgh, Pennsylvania. <i>Journal of the Air and Waste Management Association</i> , 2002 , 52, 732-41	2.4	67
151	Major Source Categories for PM2.5 in Pittsburgh using PMF and UNMIX. <i>Aerosol Science and Technology</i> , 2006 , 40, 910-924	3.4	66
150	Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines. <i>Environmental Science & Environmental Science &</i>	10.3	64

149	Secondary aerosol formation from photochemical aging of aircraft exhaust in a smog chamber. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 4135-4147	6.8	62
148	Laboratory measurements of the heterogeneous oxidation of condensed-phase organic molecular makers for motor vehicle exhaust. <i>Environmental Science & amp; Technology</i> , 2008 , 42, 7950-6	10.3	62
147	Secondary organic aerosol formation from photo-oxidation of unburned fuel: experimental results and implications for aerosol formation from combustion emissions. <i>Environmental Science & Environmental Science & Technology</i> , 2013 , 47, 12886-93	10.3	61
146	Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement methods. <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 2017-2035	4	60
145	Volatility and aging of atmospheric organic aerosol. <i>Topics in Current Chemistry</i> , 2014 , 339, 97-143		56
144	Fine particle and organic vapor emissions from staged tests of an in-use aircraft engine. <i>Atmospheric Environment</i> , 2011 , 45, 3603-3612	5.3	55
143	Ambient measurements of metal-containing PM2.5 in an urban environment using laser-induced breakdown spectroscopy. <i>Atmospheric Environment</i> , 2004 , 38, 3319-3328	5.3	54
142	Fine particle emission profile for a large coke production facility based on highly time-resolved fence line measurements. <i>Atmospheric Environment</i> , 2005 , 39, 6719-6733	5.3	54
141	Secondary Organic Aerosol Production from Gasoline Vehicle Exhaust: Effects of Engine Technology, Cold Start, and Emission Certification Standard. <i>Environmental Science & Enpirology</i> , 2018 , 52, 1253-1261	10.3	51
140	Design and Evaluation of a Portable Dilution Sampling System for Measuring Fine Particle Emissions. <i>Aerosol Science and Technology</i> , 2005 , 39, 542-553	3.4	48
139	Methane Emissions from Natural Gas Production Sites in the United States: Data Synthesis and National Estimate. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	47
138	New particle formation and growth in biomass burning plumes: An important source of cloud condensation nuclei. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	46
137	Effects of Sampling Conditions on the Size Distribution of Fine Particulate Matter Emitted from a Pilot-Scale Pulverized-Coal Combustor. <i>Energy & Empty Section</i> , 2002, 16, 302-310	4.1	46
136	Mixing and phase partitioning of primary and secondary organic aerosols. <i>Geophysical Research Letters</i> , 2009 , 36, n/a-n/a	4.9	45
135	Experimental Measurements of the Thermal Conductivity of Ash Deposits: Part 2. Effects of Sintering and Deposit Microstructure. <i>Energy & Deposit</i> , 15, 75-84	4.1	45
134	Spatial Variations of PM2.5 During the Pittsburgh Air Quality Study. <i>Aerosol Science and Technology</i> , 2004 , 38, 80-90	3.4	44
133	Comprehensive organic emission profiles for gasoline, diesel, and gas-turbine engines including intermediate and semi-volatile organic compound emissions. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 17637-17654	6.8	44
132	Characterizing the spatial variation of air pollutants and the contributions of high emitting vehicles in Pittsburgh, PA. <i>Environmental Science & Environmental Science & Env</i>	10.3	41

131	Source contributions to primary organic aerosol: Comparison of the results of a source-resolved model and the chemical mass balance approach. <i>Atmospheric Environment</i> , 2007 , 41, 3758-3776	5.3	41
130	Radon Entry into Buildings Driven by Atmospheric Pressure Fluctuations. <i>Environmental Science & Environmental Science</i>	10.3	40
129	Production of Secondary Organic Aerosol During Aging of Biomass Burning Smoke From Fresh Fuels and Its Relationship to VOC Precursors. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 3583-3606	4.4	39
128	Restaurant Impacts on Outdoor Air Quality: Elevated Organic Aerosol Mass from Restaurant Cooking with Neighborhood-Scale Plume Extents. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	39
127	Chemical transport model simulations of organic aerosol in southern California: model evaluation and gasoline and diesel source contributions. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 4305-4318	6.8	39
126	Detailed Speciation of Intermediate Volatility and Semivolatile Organic Compound Emissions from Gasoline Vehicles: Effects of Cold-Starts and Implications for Secondary Organic Aerosol Formation. <i>Environmental Science & Environmental Science & E</i>	10.3	39
125	Primary to secondary organic aerosol: evolution of organic emissions from mobile combustion sources. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 5015-5036	6.8	38
124	Determination of Volatility Distributions of Primary Organic Aerosol Emissions from Internal Combustion Engines Using Thermal Desorption Gas Chromatography Mass Spectrometry. <i>Aerosol Science and Technology</i> , 2012 , 46, 1129-1139	3.4	38
123	Impacts of Modifiable Factors on Ambient Air Pollution: A Case Study of COVID-19 Shutdowns. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 554-559	11	37
122	Apportioning black carbon to sources using highly time-resolved ambient measurements of organic molecular markers in Pittsburgh. <i>Atmospheric Environment</i> , 2009 , 43, 3941-3950	5.3	37
121	Characterization of fine primary biogenic organic aerosol in an urban area in the northeastern United States. <i>Atmospheric Environment</i> , 2010 , 44, 3952-3962	5.3	36
120	Effects of variable wind speed and direction on radon transport from soil into buildings: model development and exploratory results. <i>Atmospheric Environment</i> , 1999 , 33, 2157-2168	5.3	35
119	Temperature Dependence of GasParticle Partitioning of Primary Organic Aerosol Emissions from a Small Diesel Engine. <i>Aerosol Science and Technology</i> , 2012 , 46, 13-21	3.4	34
118	Field measurements of solid-fuel cookstove emissions from uncontrolled cooking in China, Honduras, Uganda, and India. <i>Atmospheric Environment</i> , 2018 , 190, 116-125	5.3	34
117	Time Resolved Measurements of Speciated Tailpipe Emissions from Motor Vehicles: Trends with Emission Control Technology, Cold Start Effects, and Speciation. <i>Environmental Science & Technology</i> , 2016 , 50, 13592-13599	10.3	33
116	A dual-chamber method for quantifying the effects of atmospheric perturbations on secondary organic aerosol formation from biomass burning emissions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 6043-6058	4.4	32
115	Spatially dense air pollutant sampling: Implications of spatial variability on the representativeness of stationary air pollutant monitors. <i>Atmospheric Environment: X</i> , 2019 , 2, 100012	2.8	32
114	Understanding evolution of product composition and volatility distribution through in-situ GC GC analysis: a case study of longifolene ozonolysis. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 5335-5346	6.8	32

113	Experimental Measurements of the Thermal Conductivity of Ash Deposits: Part 1. Measurement Technique. <i>Energy & Description of Energy & Description of</i>	4.1	32
112	Interactions between coal and biomass when cofiring. <i>Proceedings of the Combustion Institute</i> , 1998 , 27, 1351-1359		30
111	Spatial Variability of Sources and Mixing State of Atmospheric Particles in a Metropolitan Area. <i>Environmental Science & Environmental Science & Envi</i>	10.3	30
110	Optical properties of black carbon in cookstove emissions coated with secondary organic aerosols: Measurements and modeling. <i>Aerosol Science and Technology</i> , 2016 , 50, 1264-1276	3.4	29
109	Evaluating the impact of new observational constraints on P-S/IVOC emissions, multi-generation oxidation, and chamber wall losses on SOA modeling for Los Angeles, CA. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 9237-9259	6.8	29
108	Reactivity of oleic acid in organic particles: changes in oxidant uptake and reaction stoichiometry with particle oxidation. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 7951-62	3.6	29
107	Laboratory measurements of the oxidation kinetics of organic aerosol mixtures using a relative rate constants approach. <i>Journal of Geophysical Research</i> , 2007 , 112,		28
106	Urban Oxidation Flow Reactor Measurements Reveal Significant Secondary Organic Aerosol Contributions from Volatile Emissions of Emerging Importance. <i>Environmental Science & Emp; Technology</i> , 2020 , 54, 714-725	10.3	27
105	Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels. <i>Environmental Science & Environmental S</i>	10.3	26
104	Spatial variation in ambient air toxics concentrations and health risks between industrial-influenced, urban, and rural sites. <i>Journal of the Air and Waste Management Association</i> , 2010 , 60, 271-86	2.4	26
103	High-spatial-resolution mapping and source apportionment of aerosol composition in Oakland, California, using mobile aerosol mass spectrometry. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 16325	5-1634	4 ²⁶
102	Cancer mortality risk, fine particulate air pollution, and smoking in a large, representative cohort of US adults. <i>Cancer Causes and Control</i> , 2020 , 31, 767-776	2.8	25
101	Estimates of non-traditional secondary organic aerosols from aircraft SVOC and IVOC emissions using CMAQ. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 6929-6942	6.8	24
100	Quantifying high-resolution spatial variations and local source impacts of urban ultrafine particle concentrations. <i>Science of the Total Environment</i> , 2019 , 655, 473-481	10.2	24
99	Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 9025-9040	6.8	23
98	Soil-gas entry into houses driven by atmospheric pressure fluctuations The influence of soil properties. <i>Atmospheric Environment</i> , 1997 , 31, 1487-1495	5.3	23
97	Scale Dependence of Soil Permeability to Air: Measurement Method and Field Investigation. <i>Water Resources Research</i> , 1996 , 32, 547-560	5.4	23
96	Laboratory measurements of the heterogeneous oxidation of condensed-phase organic molecular makers for meat cooking emissions. <i>Environmental Science & Environmental Science </i>	10.3	22

95	Competitive oxidation in atmospheric aerosols: The case for relative kinetics. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	22
94	Reduced Ultrafine Particle Concentration in Urban Air: Changes in Nucleation and Anthropogenic Emissions. <i>Environmental Science & Emp; Technology</i> , 2018 , 52, 6798-6806	10.3	21
93	Quantification of the effects of molecular marker oxidation on source apportionment estimates for motor vehicles. <i>Atmospheric Environment</i> , 2011 , 45, 3132-3140	5.3	19
92	Soil-gas entry into an experimental basement driven by atmospheric pressure fluctuationsMeasurements, spectral analysis, and model comparison. <i>Atmospheric Environment</i> , 1997 , 31, 1477-1485	5.3	19
91	Reducing Mortality from Air Pollution in the United States by Targeting Specific Emission Sources. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 639-645	11	19
90	Changes in criteria air pollution levels in the US before, during, and after Covid-19 stay-at-home orders: Evidence from regulatory monitors. <i>Science of the Total Environment</i> , 2021 , 769, 144693	10.2	19
89	Criteria pollutant impacts of volatile chemical products informed by near-field modeling. <i>Nature Sustainability</i> , 2020 , N/A, 1-57	22.1	19
88	Intracity Variability of Particulate Matter Exposure Is Driven by Carbonaceous Sources and Correlated with Land-Use Variables. <i>Environmental Science & Environmental Science </i>	10.3	19
87	Simulation of organic aerosol formation during the CalNex study: updated mobile emissions and secondary organic aerosol parameterization for intermediate-volatility organic compounds. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 4313-4332	6.8	18
86	Organic Aerosol Speciation: Intercomparison of Thermal Desorption Aerosol GC/MS (TAG) and Filter-Based Techniques. <i>Aerosol Science and Technology</i> , 2010 , 44, 141-151	3.4	18
85	The influence of a subslab gravel layer and open area on soil-gas and radon entry into two experimental basements. <i>Health Physics</i> , 1995 , 69, 367-77	2.3	18
84	System-wide and Superemitter Policy Options for the Abatement of Methane Emissions from the U.S. Natural Gas System. <i>Environmental Science & Environmental Science & Environm</i>	10.3	17
83	Land-Use Regression Modeling of Source-Resolved Fine Particulate Matter Components from Mobile Sampling. <i>Environmental Science & Environmental Scienc</i>	10.3	17
82	Testing secondary organic aerosol models using smog chamber data for complex precursor mixtures: influence of precursor volatility and molecular structure. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 5771-5780	6.8	17
81	Evaluating the national air toxics assessment (NATA): Comparison of predicted and measured air toxics concentrations, risks, and sources in Pittsburgh, Pennsylvania. <i>Atmospheric Environment</i> , 2011 , 45, 476-484	5.3	17
80	High time-resolved measurements of organic air toxics in different source regimes. <i>Atmospheric Environment</i> , 2009 , 43, 6205-6217	5.3	17
79	Identifying priority pollutant sources: apportioning air toxics risks using positive matrix factorization. <i>Environmental Science & Environmental Scie</i>	10.3	17
78	Effects of Dilution Sampling on Fine Particle Emissions from Pulverized Coal Combustion. <i>Aerosol Science and Technology</i> , 2004 , 38, 574-587	3.4	17

(2006-2020)

77	Fine Particulate Matter Exposure and Cancer Incidence: Analysis of SEER Cancer Registry Data from 1992-2016. <i>Environmental Health Perspectives</i> , 2020 , 128, 107004	8.4	17
76	Air pollution and mortality in a large, representative U.S. cohort: multiple-pollutant analyses, and spatial and temporal decompositions. <i>Environmental Health</i> , 2019 , 18, 101	6	17
<i>75</i>	Disparities in Air Pollution Exposure in the United States by Race/Ethnicity and Income, 1990-2010 Environmental Health Perspectives, 2021 , 129, 127005	8.4	17
74	The Firepower Sweep Test: A novel approach to cookstove laboratory testing. <i>Indoor Air</i> , 2018 , 28, 936	-942	16
73	Measurement and Simulation of Ash Deposit Microstructure. <i>Energy & Description</i> 2003, 17, 1311-1323	4.1	16
72	Air quality-related health damages of food. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	16
71	Application of plume analysis to build land use regression models from mobile sampling to improve model transferability. <i>Atmospheric Environment</i> , 2016 , 134, 51-60	5.3	16
70	Measurement report: Distinct emissions and volatility distribution of intermediate-volatility organic compounds from on-road Chinese gasoline vehicles: implication of high secondary organic aerosol formation potential. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 2569-2583	6.8	16
69	Impact of natural gas development in the Marcellus and Utica shales on regional ozone and fine particulate matter levels. <i>Atmospheric Environment</i> , 2017 , 155, 11-20	5.3	15
68	Urban Ultrafine Particle Exposure Assessment with Land-Use Regression: Influence of Sampling Strategy. <i>Environmental Science & Environmental Science </i>	10.3	15
67	Optimizing Emissions Reductions from the U.S. Power Sector for Climate and Health Benefits. <i>Environmental Science & Environmental Science & Environme</i>	10.3	15
66	Spatial decomposition analysis of NO2 and PM2.5 air pollution in the United States. <i>Atmospheric Environment</i> , 2020 , 241, 117470	5.3	15
65	Size distribution of vehicle emitted primary particles measured in a traffic tunnel. <i>Atmospheric Environment</i> , 2018 , 191, 9-18	5.3	15
64	Quantifying uncertainties in pollutant mapping studies using the Monte Carlo method. <i>Atmospheric Environment</i> , 2014 , 99, 333-340	5.3	15
63	Cumulative environmental and employment impacts of the shale gas boom. <i>Nature Sustainability</i> , 2019 , 2, 1122-1131	22.1	15
62	Particulate Matter and Organic Vapor Emissions from a Helicopter Engine Operating on Petroleum and Fischer Tropsch Fuels. <i>Energy & Description</i> 2012, 26, 4756-4766	4.1	14
61	Correction methods for organic carbon artifacts when using quartz-fiber filters in large particulate matter monitoring networks: the regression method and other options. <i>Journal of the Air and Waste Management Association</i> , 2011 , 61, 696-710	2.4	13
60	Application of the Pseudo-Deterministic Receptor Model to Resolve Power Plant Influences on Air Quality in Pittsburgh. <i>Aerosol Science and Technology</i> , 2006 , 40, 883-897	3.4	13

59	Measurements of NOx emissions and in-service duty cycle from a towboat operating on the inland river system. <i>Environmental Science & Environmental Sc</i>	10.3	13
58	Radon entry into houses: the importance of scale-dependent permeability. <i>Health Physics</i> , 1999 , 77, 183	3-2:3	11
57	Local- and regional-scale racial and ethnic disparities in air pollution determined by long-term mobile monitoring. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	11
56	Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , n/a-	- A / a	11
55	Spatial Correlation of Ultrafine Particle Number and Fine Particle Mass at Urban Scales: Implications for Health Assessment. <i>Environmental Science & Environmental Science & </i>	10.3	10
54	Moving beyond Fine Particle Mass: High-Spatial Resolution Exposure to Source-Resolved Atmospheric Particle Number and Chemical Mixing State. <i>Environmental Health Perspectives</i> , 2020 , 128, 17009	8.4	10
53	Analyses of turbulent flow fields and aerosol dynamics of diesel engine exhaust inside two dilution sampling tunnels using the CTAG model. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	10
52	Possible malfunction in widely used methane sampler deserves attention but poses limited implications for supply chain emission estimates. <i>Elementa</i> , 2016 , 4,	3.6	10
51	Closing the gap on lower cost air quality monitoring: machine learning calibration models to improve low-cost sensor performance		10
50	Individual Particle Morphology and Acidity. Aerosol Science and Technology, 2008, 42, 224-232	3.4	9
49	Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles		9
48	Using a network of lower-cost monitors to identify the influence of modifiable factors driving spatial patterns in fine particulate matter concentrations in an urban environment. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2020 , 30, 949-961	6.7	9
47	The interplay between assumed morphology and the direct radiative effect of light-absorbing organic aerosol. <i>Geophysical Research Letters</i> , 2016 , 43, 8735-8743	4.9	9
46	Mass accommodation coefficients of fresh and aged biomass-burning emissions. <i>Aerosol Science and Technology</i> , 2018 , 52, 300-309	3.4	8
45	Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber		8
44	Secondary organic aerosol production from pinanediol, a semi-volatile surrogate for first-generation oxidation products of monoterpenes. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 617	1 ⁶ .8186	; 7
43	in situ measurements of the thermal conductivity of ash deposits. <i>Proceedings of the Combustion Institute</i> , 1998 , 27, 1727-1735		7
42	Improving Correlations between Land Use and Air Pollutant Concentrations Using Wavelet Analysis: Insights from a Low-cost Sensor Network. <i>Aerosol and Air Quality Research</i> , 2020 , 20, 314-328	4.6	7

41	Trace gas emissions from combustion of peat, crop residue, biofuels, grasses, and other fuels: configuration and FTIR component of the fourth Fire Lab at Missoula Experiment (FLAME-4)		7
40	Laboratory investigation of photochemical oxidation of organic aerosol from wood fires Part 1: Measurement and simulation of organic aerosol evolution		7
39	Fine Particulate Matter Air Pollution and Mortality Risk Among US Cancer Patients and Survivors. <i>JNCI Cancer Spectrum</i> , 2021 , 5, pkab001	4.6	7
38	Water-soluble iron emitted from vehicle exhaust is linked to primary speciated organic compounds. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1849-1860	6.8	6
37	Laboratory investigation of photochemical oxidation of organic aerosol from wood fires Part 2: Analysis of aerosol mass spectrometer data		6
36	Socio-economic disparities in exposure to urban restaurant emissions are larger than for traffic. <i>Environmental Research Letters</i> , 2020 , 15, 114039	6.2	6
35	Simulation of fresh and chemically-aged biomass burning organic aerosol. <i>Atmospheric Environment</i> , 2019 , 196, 27-37	5.3	6
34	Aerosol Optical Properties and Climate Implications of Emissions from Traditional and Improved Cookstoves. <i>Environmental Science & Environmental Scie</i>	10.3	6
33	Computational Analysis of Particle Nucleation in Dilution Tunnels: Effects of Flow Configuration and Tunnel Geometry. <i>Aerosol Science and Technology</i> , 2014 , 48, 638-648	3.4	5
32	Direct measurements of soil-gas entry into an experimental basement driven by atmospheric pressure fluctuations. <i>Geophysical Research Letters</i> , 1995 , 22, 1929-1932	4.9	5
31	A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics		5
30	A two-dimensional volatility basis set Part 2: Diagnostics of organic-aerosol evolution		5
29	Secondary organic aerosol production from diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle		5
28	Evolving mass spectra of the oxidized component of organic aerosol: results from aerosol mass spectrometer analyses of aged diesel emissions		5
27	Where Did This Particle Come From? Sources of Particle Number and Mass for Human Exposure Estimates. <i>Issues in Environmental Science and Technology</i> , 2016 , 35-71	0.7	5
26	Comparing regional stove-usage patterns and using those patterns to model indoor air quality impacts. <i>Indoor Air</i> , 2020 , 30, 521-533	5.4	4
25	Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement methods 2014 ,		4
24	The influence of semi-volatile and reactive primary emissions on the abundance and properties of global organic aerosol		4

23	High-Spatial-Resolution Estimates of Ultrafine Particle Concentrations across the Continental United States. <i>Environmental Science & Environmental Sc</i>	10.3	4
22	Evaluating the Effectiveness of Tutorial Dialogue Instruction in an Exploratory Learning Context. <i>Lecture Notes in Computer Science</i> , 2006 , 666-674	0.9	4
21	CycleTalk: Toward a Dialogue Agent That Guides Design with an Articulate Simulator. <i>Lecture Notes in Computer Science</i> , 2004 , 401-411	0.9	3
20	Secondary aerosol formation from photochemical aging of aircraft exhaust in a smog chamber		3
19	Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust		3
18	Biomass burning organic aerosol from prescribed burning and other activities in the United States. <i>Atmospheric Environment</i> , 2020 , 241, 117753	5.3	3
17	Past, present, and future of ultrafine particle exposures in North America. <i>Atmospheric Environment: X</i> , 2021 , 10, 100109	2.8	3
16	Full-volatility emission framework corrects missing and underestimated secondary organic aerosol sources. <i>One Earth</i> , 2022 , 5, 403-412	8.1	3
15	PM2.5 and ozone air pollution levels have not dropped consistently across the US following societal covid response. <i>ISEE Conference Abstracts</i> , 2020 , 2020,	2.9	2
14	High spatial resolution mapping of aerosol composition and sources in Oakland, California using mobile aerosol mass spectrometry		2
13	Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions		2
12	The food we eat, the air we breathe: a review of the fine particulate matter-induced air quality health impacts of the global food system. <i>Environmental Research Letters</i> , 2021 , 16, 103004	6.2	2
11	Quantifying the social equity state of an energy system: environmental and labor market equity of the shale gas boom in Appalachia. <i>Environmental Research Letters</i> , 2019 , 14, 124072	6.2	2
10	Estimating long-term pollution exposure effects through inverse probability weighting methods with Cox proportional hazards models. <i>Environmental Epidemiology</i> , 2020 , 4, e085	0.2	1
9	The relationship between black carbon and polycyclic aromatic hydrocarbon exposures and mortality in Allegheny County, Pennsylvania. <i>Air Quality, Atmosphere and Health</i> , 2020 , 13, 893-908	5.6	1
8	Spatial Variation in Ambient Air Toxics Concentrations and Health Risks between Industrial-Influenced, Urban, and Rural Sites. <i>Journal of the Air and Waste Management Association</i> , 2010 , 60, 1-4	2.4	1
7	Cloud condensation nuclei activity of fresh primary and aged biomass burning aerosol		1
6	Modeling the influence of precursor volatility and molecular structure on secondary organic aerosol formation using evaporated fuel experiments		1

LIST OF PUBLICATIONS

5	An Enhanced Sub-grid Scale Approach to Characterize Air Quality Impacts of Aircraft Emissions. <i>NATO Science for Peace and Security Series C: Environmental Security</i> , 2014 , 327-332	0.3	1
4	A naming convention for atmospheric organic aerosol		1
3	Limited Secondary Organic Aerosol Production from Acyclic Oxygenated Volatile Chemical Products <i>Environmental Science & Environmental Science & Env</i>	10.3	1
2	Energetics to energy: Combustion and environmental considerations surrounding the reapplication of energetic materials as boiler fuels. <i>Proceedings of the Combustion Institute</i> , 1998 , 27, 1317-1325		
1	A Novel Technique to Measure the Magnitude and Direction of Flow in a Tube. <i>Journal of Fluids Engineering, Transactions of the ASME</i> , 2000 , 122, 186-188	2.1	