Oleg S Yuzikhin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3266411/publications.pdf

Version: 2024-02-01

15	185	7	13
papers	citations	h-index	g-index
15	15	15	219
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rhizosphere Bacterium Rhodococcus sp. P1Y Metabolizes Abscisic Acid to Form Dehydrovomifoliol. Biomolecules, 2021, 11, 345.	1.8	18
2	Increasing the Legume–Rhizobia Symbiotic Efficiency Due to the Synergy between Commercial Strains and Strains Isolated from Relict Symbiotic Systems. Agronomy, 2021, 11, 1398.	1.3	3
3	2-(2-Amino-6-methylpyrimidin-4-yl)-4-arylmethylidene- 5-methyl-2,4-dihydro-3H-pyrazol-3-ones: Design, synthesis, structure, in vitro anti-tubercular activity, and molecular docking study. Journal of Molecular Structure, 2021, 1243, 130863.	1.8	2
4	The Role of Symbiotic Microorganisms, Nutrient Uptake and Rhizosphere Bacterial Community in Response of Pea (Pisum sativum L.) Genotypes to Elevated Al Concentrations in Soil. Plants, 2020, 9, 1801.	1.6	12
5	5-Aryl-1-[pyrimidin-2(4)-yl]-3-phenyl-4,5-dihydro-1H-pyrazoles. Synthesis from substituted 2(4)-hydrazinopyrimidines and fragmentation under positive electrospray ionization. Russian Journal of Organic Chemistry, 2016, 52, 1173-1178.	0.3	1
6	Aryl ethers of 4-[(2-hydroxyethyl)sulfanyl]pyrimidine derivatives: Pathways of synthesis and fungicidal activity of their salt forms. Russian Journal of General Chemistry, 2016, 86, 1274-1281.	0.3	0
7	Study of Structure of Industrial Acid Hydrolysis Lignin, Oxidized in the H ₂ O ₂ -H _{SO₄System. Journal of Wood Chemistry and Technology, 2016, 36, 259-269.}	0.9	19
8	General synthesis of 4-aryloxy-6-methylpyrimidin-2-amines and their fragmentation under positive electrospray ionization. Russian Journal of Organic Chemistry, 2015, 51, 1430-1433.	0.3	0
9	Chemical structure and physicochemical properties of oxidized hydrolysis lignin. Russian Journal of Applied Chemistry, 2015, 88, 1295-1303.	0.1	10
10	Tandem superelectrophilic hydroarylation of C C bond and carbonyl reduction in cinnamides: synthetic rout to 3,3-diarylpropylamines, valuable pharmaceuticals. Tetrahedron, 2015, 71, 102-108.	1.0	18
11	Oxidative dimerization of 3-(4-methoxyphenyl)propenic acid N-methylamide in the system PbO2-CF3CO2H-(CF3CO)2O-CH2Cl2. Russian Journal of Organic Chemistry, 2014, 50, 1699-1701.	0.3	2
12	Isolation, identification, and characteristics of the phytotoxin produced by the fungus Alternaria cirsinoxia. Applied Biochemistry and Microbiology, 2010, 46, 75-79.	0.3	22
13	Herbicidal Potential of Stagonolide, a New Phytotoxic Nonenolide from Stagonospora cirsii. Journal of Agricultural and Food Chemistry, 2007, 55, 7707-7711.	2.4	73
14	Title is missing!. Russian Journal of Applied Chemistry, 2002, 75, 75-79.	0.1	4
15	Title is missing!. Russian Journal of Organic Chemistry, 2002, 38, 1277-1285.	0.3	1