
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3266154/publications.pdf Version: 2024-02-01

KVDA F DVKF

#	Article	IF	CITATIONS
1	The physiological basis underlying functional connectivity differences in older adults: A multi-modal analysis of resting-state fMRI. Brain Imaging and Behavior, 2022, 16, 1575-1591.	2.1	4
2	Examination of Sex-Specific Participant Inclusion in Exercise Physiology Endothelial Function Research: A Systematic Review. Frontiers in Sports and Active Living, 2022, 4, 860356.	1.8	11
3	A pilot study assessing effectiveness of a written shame induction protocol with and without a social evaluative threat manipulation Canadian Journal of Behavioural Science, 2022, 54, 257-267.	0.6	1
4	The acute effect of a laboratory shame induction protocol on endothelial function in young, healthy adults. Experimental Physiology, 2022, 107, 978-993.	2.0	4
5	A New Protocol for Controlling and Targeting Reactive Hyperemia Shear Stress to Assess Endothelial Function. FASEB Journal, 2021, 35, .	0.5	0
6	Influence of Acute, Sympathetic Nervous Activityâ€Independent Changes in Blood Pressure on Forearm Arterial Stiffness. FASEB Journal, 2021, 35, .	0.5	0
7	Individual variation of follicular phase changes in endothelial function across two menstrual cycles. Experimental Physiology, 2021, 106, 1389-1400.	2.0	13
8	Reliability of Vasodilation in Response to Passive Leg Movement in Young, Healthy Women. FASEB Journal, 2021, 35, .	0.5	0
9	The impact of repeated, local heating-induced increases in blood flow on lower limb endothelial function in young, healthy females. European Journal of Applied Physiology, 2021, 121, 3017-3030.	2.5	4
10	Reliability of the hyperaemic response to passive leg movement in young, healthy women. Experimental Physiology, 2021, 106, 2013-2023.	2.0	7
11	Evidence of a limb- and shear stress stimulus profile-dependent impact of high-intensity cycling training on flow-mediated dilation. Applied Physiology, Nutrition and Metabolism, 2020, 45, 135-145.	1.9	3
12	No impact of acute hyperglycaemia on arterial stiffness in the early and late follicular phases of the menstrual cycle in young females. Experimental Physiology, 2020, 105, 174-183.	2.0	2
13	Physical Activity in Pregnancy Is Associated with Increased Flow-mediated Dilation. Medicine and Science in Sports and Exercise, 2020, 52, 801-809.	0.4	5
14	Reproducible improvement in endothelial function following two separate periods of high-intensity interval training in young men. Journal of Applied Physiology, 2020, 129, 725-731.	2.5	5
15	Inclusion of female participants in cardiovascular research: a case study of Ontario NSERC-funded programs. Applied Physiology, Nutrition and Metabolism, 2020, 45, 911-914.	1.9	11
16	Sitting cross-legged for 30 min alters lower limb shear stress pattern but not flow-mediated dilation or arterial stiffness. Applied Physiology, Nutrition and Metabolism, 2019, 44, 221-224.	1.9	6
17	Global Reach 2018: reduced flow-mediated dilation stimulated by sustained increases in shear stress in high-altitude excessive erythrocytosis. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H991-H1001.	3.2	12
18	Global REACH 2018. Hypertension, 2019, 73, 1327-1335.	2.7	44

#	Article	IF	CITATIONS
19	Examining the acute effects of retrograde versus low mean shear rate on flow-mediated dilation. Journal of Applied Physiology, 2019, 126, 1335-1342.	2.5	17
20	The influence of acute hyperglycaemia on brachial artery flowâ€mediated dilatation in the early and late follicular phases of the menstrual cycle. Experimental Physiology, 2019, 104, 957-966.	2.0	11
21	The impact of acute mental stress on brachial artery flow-mediated dilation in women diagnosed with depression. International Journal of Psychophysiology, 2019, 135, 113-120.	1.0	8
22	Ramp and step increases in shear stress result in a similar magnitude of brachial artery flow-mediated dilation. European Journal of Applied Physiology, 2019, 119, 611-619.	2.5	10
23	Evidence of sex differences in the acute impact of oscillatory shear stress on endothelial function. Journal of Applied Physiology, 2019, 126, 314-321.	2.5	19
24	Evidence of a Shear Stress Stimulus Profile Dependent Impact of Cycling Training on Flowâ€Mediated Dilation. FASEB Journal, 2019, 33, 541.14.	0.5	0
25	Flow-mediated dilation stimulated by sustained increases in shear stress: A useful tool for assessing endothelial function in humans?. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, ajpheart.00534	3.2	45
26	Systemic vascular dysfunction is associated with emphysema burden in mild COPD. Respiratory Medicine, 2018, 136, 29-36.	2.9	12
27	The impact of menstrual phase on brachial artery flowâ€mediated dilatation during handgrip exercise in healthy premenopausal women. Experimental Physiology, 2018, 103, 291-302.	2.0	32
28	Thirty minutes of handgrip exercise potentiates flowâ€mediated dilatation in response to sustained and transient shear stress stimuli to a similar extent. Experimental Physiology, 2018, 103, 1326-1337.	2.0	8
29	UBC-Nepal Expedition: imposed oscillatory shear stress does not further attenuate flow-mediated dilation during acute and sustained hypoxia. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H122-H131.	3.2	17
30	UBC-Nepal expedition: upper and lower limb conduit artery shear stress and flow-mediated dilation on ascent to 5,050 m in lowlanders and Sherpa. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1532-H1543.	3.2	17
31	Assessment of flowâ€mediated dilatation in the superficial femoral artery using a sustained shear stress stimulus via calf plantarâ€flexion exercise. Experimental Physiology, 2017, 102, 725-737.	2.0	8
32	The influence of vitamin C on the interaction between acute mental stress and endothelial function. European Journal of Applied Physiology, 2017, 117, 1657-1668.	2.5	10
33	The impact of an acute oral phosphate load on endothelium dependent and independent brachial artery vasodilation in healthy males. Applied Physiology, Nutrition and Metabolism, 2017, 42, 1307-1315.	1.9	8
34	Cardiovascular and Cortisol Reactivity to Acute Mental Stress in Female Shift and Non-Shift Workers. SAGE Open Nursing, 2017, 3, 237796081770918.	1.2	2
35	Impaired handgrip exercise-induced brachial artery flow-mediated dilation in young obese males. Applied Physiology, Nutrition and Metabolism, 2016, 41, 528-537.	1.9	18
36	Impaired brachial artery endothelial function in young healthy women following an acute painful stimulus. European Journal of Applied Physiology, 2015, 115, 1547-1557.	2.5	1

#	Article	IF	CITATIONS
37	The impact of a cold pressor test on brachial artery handgrip exercise-induced flow-mediated dilation. Vascular Medicine, 2015, 20, 409-416.	1.5	13
38	Evidence that meal fat content does not impact hemodynamic reactivity to or recovery from repeated mental stress tasks. Applied Physiology, Nutrition and Metabolism, 2014, 39, 1314-1321.	1.9	1
39	Acute psychological and physical stress transiently enhances brachial artery flow-mediated dilation stimulated by exercise-induced increases in shear stress. Applied Physiology, Nutrition and Metabolism, 2014, 39, 927-936.	1.9	11
40	Can a combination of handgrip exercise and prolonged forearm occlusion elicit a maximal brachial artery FMD response?. European Journal of Applied Physiology, 2014, 114, 1297-1307.	2.5	2
41	The combined influence of fat consumption and repeated mental stress on brachial artery flowâ€mediated dilatation: a preliminary study. Experimental Physiology, 2014, 99, 715-728.	2.0	9
42	The impact of handgrip exercise duty cycle on brachial artery flow-mediated dilation. European Journal of Applied Physiology, 2013, 113, 1849-1858.	2.5	14
43	The impact of acute mental stress on vascular endothelial function: Evidence, mechanisms and importance. International Journal of Psychophysiology, 2013, 88, 124-135.	1.0	71
44	The impact of acute mental stress on brachial artery flow-mediated dilation differs when shear stress is elevated by reactive hyperemia versus handgrip exercise. Applied Physiology, Nutrition and Metabolism, 2013, 38, 498-506.	1.9	23
45	Impaired brachial artery flow-mediated vasodilation in response to handgrip exercise-induced increases in shear stress in young smokers. Vascular Medicine, 2013, 18, 63-71.	1.5	19
46	Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H2-H12.	3.2	1,126
47	The impact of baseline artery diameter on flow-mediated vasodilation: a comparison of brachial and radial artery responses to matched levels of shear stress. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1667-H1677.	3.2	39
48	Impact of repeated increases in shear stress via reactive hyperemia and handgrip exercise: no evidence of systematic changes in brachial artery FMD. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1078-H1089.	3.2	41
49	No Evidence Of Systematic Changes In Brachial Artery FMD With Repeated Increases In Shear Stress. Medicine and Science in Sports and Exercise, 2010, 42, 310.	0.4	1
50	Nitric oxide is not obligatory for radial artery flow-mediated dilation following release of 5 or 10 min distal occlusion. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H119-H126.	3.2	62
51	Brachial artery flow-mediated dilation during handgrip exercise: evidence for endothelial transduction of the mean shear stimulus. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2669-H2679.	3.2	66
52	Are the dynamic response characteristics of brachial artery flow-mediated dilation sensitive to the magnitude of increase in shear stimulus?. Journal of Applied Physiology, 2008, 105, 282-292.	2.5	64
53	Do vasoregulatory mechanisms in exercising human muscle compensate for changes in arterial perfusion pressure?. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2928-H2936.	3.2	22
54	Reply to Drs. Harris and Padilla. Journal of Applied Physiology, 2007, 103, 1109-1109.	2.5	4

#	Article	IF	CITATIONS
55	Peak vs. total reactive hyperemia: which determines the magnitude of flow-mediated dilation?. Journal of Applied Physiology, 2007, 102, 1510-1519.	2.5	255
56	The relationship between shear stress and flowâ€mediated dilatation: implications for the assessment of endothelial function. Journal of Physiology, 2005, 568, 357-369.	2.9	485
57	Impact of controlling shear rate on flow-mediated dilation responses in the brachial artery of humans. Journal of Applied Physiology, 2004, 97, 499-508.	2.5	211