Paolo Bonato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3266062/publications.pdf

Version: 2024-02-01

179 papers 10,053 citations

94433 37 h-index 90 g-index

186 all docs

186 docs citations

186 times ranked 11381 citing authors

#	Article	IF	CITATIONS
1	Effect of using of a lower-extremity exoskeleton on disability of people with multiple sclerosis. Disability and Rehabilitation: Assistive Technology, 2023, 18, 475-482.	2.2	8
2	Evaluation of a lower-extremity robotic exoskeleton for people with knee osteoarthritis. Assistive Technology, 2022, 34, 543-556.	2.0	9
3	Voice Biomarkers of Recovery From Acute Respiratory Illness. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 2787-2795.	6.3	5
4	Healthcare Innovations to Address the Challenges of the COVID-19 Pandemic. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 3294-3302.	6.3	13
5	Artificial Intelligence for Detecting COVID-19 With the Aid of Human Cough, Breathing and Speech Signals: Scoping Review. IEEE Open Journal of Engineering in Medicine and Biology, 2022, 3, 235-241.	2.3	1
6	Qigong Training Positively Impacts Both Posture and Mood in Breast Cancer Survivors With Persistent Post-surgical Pain: Support for an Embodied Cognition Paradigm. Frontiers in Psychology, 2022, 13, 800727.	2.1	3
7	Wearable Sensing and Telehealth Technology with Potential Applications in the Coronavirus Pandemic. IEEE Reviews in Biomedical Engineering, 2021, 14, 48-70.	18.0	174
8	Predicting and Monitoring Upper-Limb Rehabilitation Outcomes Using Clinical and Wearable Sensor Data in Brain Injury Survivors. IEEE Transactions on Biomedical Engineering, 2021, 68, 1871-1881.	4.2	19
9	Accelerometer data collected with a minimum set of wearable sensors from subjects with Parkinson's disease. Scientific Data, 2021, 8, 48.	5.3	25
10	The Role Played by Mass, Friction, and Inertia on the Driving Torques of Lower-Limb Gait Training Exoskeletons. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 125-136.	3.2	20
11	Limb and trunk accelerometer data collected with wearable sensors from subjects with Parkinson's disease. Scientific Data, 2021, 8, 47.	5.3	8
12	Keynote: Digital Health Technologies and Their Role in the Development of Precision Rehabilitation Interventions. , $2021, \ldots$		1
13	Crowdsourcing digital health measures to predict Parkinson's disease severity: the Parkinson's Disease Digital Biomarker DREAM Challenge. Npj Digital Medicine, 2021, 4, 53.	10.9	24
14	Recommendation to Use Wearable-Based mHealth in Closed-Loop Management of Acute Cardiovascular Disease Patients During the COVID-19 Pandemic. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 903-908.	6.3	24
15	Detecting Sensitive Mobility Features for Parkinson's Disease Stages Via Machine Learning. Movement Disorders, 2021, 36, 2144-2155.	3.9	40
16	The impact of chronotype on circadian rest-activity rhythm and sleep characteristics across the week. Chronobiology International, 2021, 38, 1575-1590.	2.0	4
17	Cortical correlates in upright dynamic and static balance in the elderly. Scientific Reports, 2021, 11, 14132.	3.3	20
18	Forward and backward walking share the same motor modules and locomotor adaptation strategies. Heliyon, 2021, 7, e07864.	3.2	5

#	Article	IF	Citations
19	Neurotechnology in Acquired Brain Injury Rehabilitation. , 2021, , .		O
20	Muscular and cortical activation during dynamic and static balance in the elderly: A scoping review. Aging Brain, $2021,1,100013.$	1.3	16
21	Trajectory Tracking Impedance Controller in 6-DoF Lower-Limb Exoskeleton for Over-Ground Walking Training: Preliminary Results. , 2021, , .		11
22	Motor skill acquisition during a balance task as a process of optimization of motor primitives. European Journal of Neuroscience, 2020, 51, 2082-2094.	2.6	7
23	"Making Peace with Our Bodies― A Qualitative Analysis of Breast Cancer Survivors' Experiences with Qigong Mind–Body Exercise. Journal of Alternative and Complementary Medicine, 2020, 26, 827-834.	2.1	14
24	Enabling precision rehabilitation interventions using wearable sensors and machine learning to track motor recovery. Npj Digital Medicine, 2020, 3, 121.	10.9	55
25	Assessing the Feasibility of Augmenting Fall Detection Systems by Relying on UWB-Based Position Tracking and a Home Robot. Sensors, 2020, 20, 5361.	3.8	7
26	Alertness Training Improves Spatial Bias and Functional Ability in Spatial Neglect. Annals of Neurology, 2020, 88, 747-758.	5.3	8
27	Can mHealth Technology Help Mitigate the Effects of the COVID-19 Pandemic?. IEEE Open Journal of Engineering in Medicine and Biology, 2020, 1, 243-248.	2.3	69
28	Sensorimotor conflict tests in an immersive virtual environment reveal subclinical impairments in mild traumatic brain injury. Scientific Reports, 2020, 10, 14773.	3.3	7
29	Can kinematic parameters of 3D reach-to-target movements be used as a proxy for clinical outcome measures in chronic stroke rehabilitation? An exploratory study. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 106.	4.6	6
30	Guest Editorial Flexible Sensing and Medical Imaging for Cerebro-Cardiovascular Health. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3189-3190.	6.3	1
31	A Simple Low-Cost Wearable Sensor for Long-Term Ambulatory Monitoring of Knee Joint Kinematics. IEEE Transactions on Biomedical Engineering, 2020, 67, 3483-3490.	4.2	16
32	Variations in rest-activity rhythm are associated with clinically measured disease severity in Parkinson's disease. Chronobiology International, 2020, 37, 699-711.	2.0	7
33	mHealth and wearable technology should replace motor diaries to track motor fluctuations in Parkinson's disease. Npj Digital Medicine, 2020, 3, 6.	10.9	83
34	Age-specific differences in the time-frequency representation of surface electromyographic data recorded during a submaximal cyclic back extension exercise: a promising biomarker to detect early signs of sarcopenia. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 8.	4.6	12
35	Robot-Driven Locomotor Perturbations Reveal Synergy-Mediated, Context-Dependent Feedforward and Feedback Mechanisms of Adaptation. Scientific Reports, 2020, 10, 5104.	3.3	18
36	Qigong Mind-Body Exercise as a Biopsychosocial Therapy for Persistent Post-Surgical Pain in Breast Cancer: A Pilot Study. Integrative Cancer Therapies, 2020, 19, 153473541989376.	2.0	26

#	Article	IF	Citations
37	Human balance models optimized using a large-scale, parallel architecture with applications to mild traumatic brain injury. , 2020, , .		1
38	From hand-perspective visual information to grasp type probabilities. , 2019, , .		6
39	Development of a "transparent operation mode―for a lower-limb exoskeleton designed for children with cerebral palsy. , 2019, 2019, 512-517.		33
40	Wireless Low Energy System Architecture for Event-Driven Surface Electromyography. Lecture Notes in Electrical Engineering, 2019, , 179-185.	0.4	4
41	A novel upper-limb function measure derived from finger-worn sensor data collected in a free-living setting. PLoS ONE, 2019, 14, e0212484.	2.5	32
42	A roadmap for implementation of patientâ€centered digital outcome measures in Parkinson's disease obtained using mobile health technologies. Movement Disorders, 2019, 34, 657-663.	3.9	213
43	The Parkinson's disease eâ€diary: Developing a clinical and research tool for the digital age. Movement Disorders, 2019, 34, 676-681.	3.9	43
44	Gait impairments in Parkinson's disease. Lancet Neurology, The, 2019, 18, 697-708.	10.2	374
45	A Novel End-Effector System to Enable Pro-Supination Movements During Robot-Assisted Upper-Limb Training. Archives of Physical Medicine and Rehabilitation, 2019, 100, e165.	0.9	1
46	Upper Extremity Rehabilitation with the BURT Robotic Arm. Archives of Physical Medicine and Rehabilitation, 2019, 100, e208-e209.	0.9	1
47	Assessing aberrant muscle activity patterns via the analysis of surface EMG data collected during a functional evaluation. BMC Musculoskeletal Disorders, 2019, 20, 13.	1.9	15
48	The Use of a Finger-Worn Accelerometer for Monitoring of Hand Use in Ambulatory Settings. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 599-606.	6.3	26
49	Towards the Design of a Ring Sensor-based mHealth System to Achieve Optimal Motor Function in Stroke Survivors. , 2019, 3, 1-26.		14
50	Enabling Stroke Rehabilitation in Home and Community Settings: A Wearable Sensor-Based Approach for Upper-Limb Motor Training. IEEE Journal of Translational Engineering in Health and Medicine, 2018, 6, 1-11.	3.7	75
51	Advanced Robotic Therapy Integrated Centers (ARTIC): an international collaboration facilitating the application of rehabilitation technologies. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 30.	4.6	37
52	Finger-Worn Sensors for Accurate Functional Assessment of the Upper Limbs in Real-World Settings. , 2018, 2018, 4440-4443.		4
53	Evaluation of the Keeogo exoskeleton for assisting ambulatory activities in people with multiple sclerosis: an open-label, randomized, cross-over trial. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 117.	4.6	41
54	Muscle Synergies as the Basis for the Control of a Hand Prosthesis. Archives of Physical Medicine and Rehabilitation, 2018, 99, e207-e208.	0.9	0

#	Article	IF	CITATIONS
55	Tai Chi for Reducing Dual-task Gait Variability, a Potential Mediator of Fall Risk in Parkinson's Disease: A Pilot Randomized Controlled Trial. Global Advances in Health and Medicine, 2018, 7, 216495611877538.	1.6	42
56	Evaluation of a toolkit for standardizing clinical measures of muscle tone. Physiological Measurement, 2018, 39, 085001.	2.1	4
57	From A to Z: Wearable technology explained. Maturitas, 2018, 113, 40-47.	2.4	126
58	UWB Tracking for Home Care Systems with Off-the-Shelf Components. , 2018, , .		6
59	Complex Upper-Limb Movements Are Generated by Combining Motor Primitives that Scale with the Movement Size. Scientific Reports, 2018, 8, 12918.	3.3	29
60	Robot-induced perturbations of human walking reveal a selective generation of motor adaptation. Science Robotics, 2017, 2, .	17.6	40
61	Balance Impairments in Different Subgroups of Patients With Migraine. Headache, 2017, 57, 363-374.	3.9	22
62	Dual Task Assessment of the Impact of Tai Chi on Postural Control in Parkinson's Disease. Archives of Physical Medicine and Rehabilitation, 2017, 98, e55.	0.9	1
63	A Finger-Worn Ring Sensor to Capture Hand Movements in an Ambulatory Setting. Archives of Physical Medicine and Rehabilitation, 2017, 98, e26.	0.9	3
64	Designing a Wrist-Worn Sensor to Monitor Upper-Limb Use in Stroke Survivors: Stakeholder Focus Group Results. Archives of Physical Medicine and Rehabilitation, 2017, 98, e50.	0.9	0
65	Functional Ambulation in a Patient With Primary Lateral Sclerosis Using a Lower Extremity Robotic Exoskeleton. Archives of Physical Medicine and Rehabilitation, 2017, 98, e69.	0.9	0
66	MOVER: Mobile Virtual Enhancements for Rehabilitation. Archives of Physical Medicine and Rehabilitation, 2017, 98, e83.	0.9	0
67	Robot-Assisted Gait Training in a Rehabilitation Facility: An Analysis of Current Practice. Archives of Physical Medicine and Rehabilitation, 2017, 98, e105.	0.9	0
68	A Novel Pediatric Exoskeleton for Over-Ground Gait Training in Children with Cerebral Palsy. Archives of Physical Medicine and Rehabilitation, 2017, 98, e26-e27.	0.9	0
69	Biomechanical Evaluation of Exoskeleton-Assisted Gait in Patients with Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2017, 98, e37.	0.9	0
70	Estimating Clinical Scores From Wearable Sensor Data In Stroke Survivors. Archives of Physical Medicine and Rehabilitation, 2017, 98, e65.	0.9	1
71	Cervical Posture Therapy Using a Head-Based Computer Interface in Children With Cerebral Palsy. Archives of Physical Medicine and Rehabilitation, 2017, 98, e40.	0.9	4
72	Using a Minimum Set of Wearable Sensors to Assess Quality of Movement in Stroke Survivors., 2017,,.		6

#	Article	IF	CITATIONS
73	Estimating Bradykinesia in Parkinson's Disease with a Minimum Number of Wearable Sensors. , 2017, , .		12
74	A Novel Finger-Worn Sensor for Ambulatory Monitoring of Hand Use. , 2017, , .		4
75	Estimating Neural Control from Concentric vs. Eccentric Surface Electromyographic Representations during Fatiguing, Cyclic Submaximal Back Extension Exercises. Frontiers in Physiology, 2017, 8, 299.	2.8	9
76	Can Tai Chi training impact fractal stride time dynamics, an index of gait health, in older adults? Cross-sectional and randomized trial studies. PLoS ONE, 2017, 12, e0186212.	2.5	20
77	Technology in Parkinson's disease: Challenges and opportunities. Movement Disorders, 2016, 31, 1272-1282.	3.9	464
78	Combining Dopaminergic Facilitation with Robot-Assisted Upper Limb Therapy in Stroke Survivors. American Journal of Physical Medicine and Rehabilitation, 2016, 95, 459-474.	1.4	26
79	Comparison of methods for estimating motor unit firing rate time series from firing times. Journal of Electromyography and Kinesiology, 2016, 31, 22-31.	1.7	3
80	Augmenting Back Pain Exercise Therapy Using an Interactive Gaming-Based Intervention in The Home Setting. Archives of Physical Medicine and Rehabilitation, 2016, 97, e133.	0.9	1
81	Usability of a new over-ground bodyweight support device (Andago \hat{A}^{\otimes} 2.0) for gait training. Archives of Physical Medicine and Rehabilitation, 2016, 97, e134.	0.9	4
82	Retrospective Analysis of Clinical Practice Data of Robot-Assisted Gait Training in Patients with Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2016, 97, e136.	0.9	0
83	Using Wearable Motion Sensors to Estimate Longitudinal Changes in Movement Quality in Stroke and Traumatic Brain Injury Survivors Undergoing Rehabilitation. Archives of Physical Medicine and Rehabilitation, 2016, 97, e117.	0.9	8
84	Robotic-assisted Gait Training as Part of the Rehabilitation Program in Persons with Traumatic and Anoxic Brain Injury. Archives of Physical Medicine and Rehabilitation, 2016, 97, e117.	0.9	2
85	Recent machine learning advancements in sensor-based mobility analysis: Deep learning for Parkinson's disease assessment., 2016, 2016, 655-658.		99
86	A novel flexible wearable sensor for estimating joint-angles. , 2016, , .		7
87	Feasibility of an Exoskeleton-Based Interactive Video Game System for Upper Extremity Burn Contractures. PM and R, 2016, 8, 445-452.	1.6	6
88	Activity detection in uncontrolled free-living conditions using a single accelerometer. , 2015, , .		5
89	Structural Integration as an Adjunct to Outpatient Rehabilitation for Chronic Nonspecific Low Back Pain: A Randomized Pilot Clinical Trial. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-19.	1.2	12
90	Guest Editorial: Special Issue on Internet of Things for Smart and Connected Health. IEEE Internet of Things Journal, 2015, 2, 1-4.	8.7	11

#	Article	IF	Citations
91	A novel method for assessing the severity of levodopa-induced dyskinesia using wearable sensors. , 2015, 2015, 8087-90.		12
92	Decomposing time series data by a non-negative matrix factorization algorithm with temporally constrained coefficients., 2015, 2015, 3496-9.		17
93	Cross-Comparison of Three Electromyogram Decomposition Algorithms Assessed With Experimental and Simulated Data. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 32-40.	4.9	4
94	Poster 272 Risk Factors of Reamputation or Amputation of the Contralateral Lower Limb in Amputees with Dysvascular Disease. PM and R, 2015, 7, S181-S181.	1.6	0
95	Robotic Gait Rehabilitation Trainer. IEEE/ASME Transactions on Mechatronics, 2014, 19, 490-499.	5.8	58
96	The effect of arm weight support on upper limb muscle synergies during reaching movements. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 22.	4.6	93
97	A Preliminary Assessment of a Novel Pneumatic Unloading Knee Brace on the Gait Mechanics of Patients With Knee Osteoarthritis. PM and R, 2013, 5, 816-824.	1.6	24
98	Calculation of Surface Electromygram Discharge Rate., 2013,,.		0
99	Editorial: Special Issue on Health Informatics and Personalized Medicine. IEEE Transactions on Biomedical Engineering, 2013, 60, 143-146.	4.2	12
100	Guest Editorial: Special Section on Point-of-Care Healthcare Technologies. IEEE Transactions on Biomedical Engineering, 2013, 60, 3267-3268.	4.2	0
101	Unraveling Mechanisms Underlying the Effectiveness of Robot-Assisted Gait Training in Children with Cerebral Palsy. Biosystems and Biorobotics, 2013, , 1139-1142.	0.3	1
102	Healthy Subject Testing with the Robotic Gait Rehabilitation (RGR) Trainer. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2013, , 341-348.	0.6	1
103	A wearable system for long-term monitoring of knee kinematics. , 2012, , .		17
104	A novel sensorized shoe system to classify gait severity in children with cerebral palsy. , 2012, 2012, 5010-3.		8
105	A review of wearable sensors and systems with application in rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 21.	4.6	1,619
106	Muscle synergy patterns as physiological markers of motor cortical damage. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14652-14656.	7.1	479
107	Development of a Body Sensor Network to Detect Motor Patterns of Epileptic Seizures. IEEE Transactions on Biomedical Engineering, 2012, 59, 3204-3211.	4.2	53
108	Major trends in mobility technology research and development: Overview of the results of the NSF-WTEC European study. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 22.	4.6	20

#	Article	IF	CITATIONS
109	Design of a Gait Training device for control of pelvic obliquity. , 2012, 2012, 3620-3.		3
110	Impact of Tai Chi exercise on multiple fracture-related risk factors in post-menopausal osteopenic women: a pilot pragmatic, randomized trial. BMC Complementary and Alternative Medicine, 2012, 12, 7.	3.7	94
111	Development of a platform to combine sensor networks and home robots to improve fall detection in the home environment., 2011, 2011, 5331-4.		4
112	An advanced rehabilitation robotic system for augmenting healthcare., 2011, 2011, 2073-6.		14
113	A Web-Based System for Home Monitoring of Patients With Parkinson's Disease Using Wearable Sensors. IEEE Transactions on Biomedical Engineering, 2011, 58, 831-836.	4.2	134
114	A low-power multi-modal body sensor network with application to epileptic seizure monitoring. , 2011, 2011, 1806-9.		5
115	Patient specific ankle-foot orthoses using rapid prototyping. Journal of NeuroEngineering and Rehabilitation, $2011, 8, 1$.	4.6	257
116	Estimating fugl-meyer clinical scores in stroke survivors using wearable sensors., 2011, 2011, 5839-42.		65
117	Comparing a passive-elastic and a powered prosthesis in transtibial amputees. , 2011, 2011, 8255-8.		16
118	Longitudinal monitoring of patients with Parkinson's disease via wearable sensor technology in the home setting., 2011, 2011, 1552-5.		23
119	Design of human $\$$ #x2014; Machine interface and altering of pelvic obliquity with RGR Trainer. , 2011, 2011, 5975496.		3
120	Guest Editorial Special Section on Personal Health Systems. IEEE Transactions on Information Technology in Biomedicine, 2010, 14, 360-363.	3.2	12
121	Guest EditorialSpecial Section on Smart Wearable Devices for Human Health and Protection. IEEE Transactions on Information Technology in Biomedicine, 2010, 14, 691-693.	3.2	10
122	A Novel Approach to Monitor Rehabilitation Outcomes in Stroke Survivors Using Wearable Technology. Proceedings of the IEEE, 2010, 98, 450-461.	21.3	139
123	Wearable Sensors and Systems. IEEE Engineering in Medicine and Biology Magazine, 2010, 29, 25-36.	0.8	305
124	Tai Chi for osteopenic women: design and rationale of a pragmatic randomized controlled trial. BMC Musculoskeletal Disorders, 2010, 11, 40.	1.9	23
125	In Situ Monitoring of Health in Older Adults: Technologies and Issues. Journal of the American Geriatrics Society, 2010, 58, 1579-1586.	2.6	168
126	Assessment of lower extremity motor adaptation via an extension of the Force Field Adaptation Paradigm., 2010, 2010, 4522-5.		9

#	Article	IF	Citations
127	Haptic system for hand rehabilitation integrating an interactive game with an advanced robotic device. , 2010 , , .		10
128	Robotically generated force fields for stroke patient pelvic obliquity gait rehabilitation., 2010,,.		9
129	Home monitoring of patients with Parkinson's disease via wearable technology and a web-based application., 2010, 2010, 4411-4.		55
130	Advances in wearable technology and its medical applications. , 2010, 2010, 2021-4.		48
131	Tracking motor recovery in stroke survivors undergoing rehabilitation using wearable technology. , 2010, 2010, 6858-61.		50
132	MercuryLive: A Web-Enhanced Platform for Long-Term High Fidelity Motion Analysis. , 2010, , .		4
133	Enhancing robotic gait training via augmented feedback. , 2010, 2010, 2271-4.		7
134	Robotic Gait Training in an Adult With Cerebral Palsy: A Case Report. PM and R, 2010, 2, 71-75.	1.6	14
135	Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait and Posture, 2010, 31, 433-437.	1.4	165
136	Upper extremity rehabilitation of children with cerebral palsy using accelerometer feedback on a multitouch display., 2010, 2010, 1751-4.		32
137	Gait Rehabilitation therapy using robot generated force fields applied at the pelvis. , 2010, , .		21
138	A sensorized glove for hand rehabilitation. , 2009, , .		2
139	Clinical applications of wearable technology. , 2009, 2009, 6580-3.		26
140	Assessing the feasibility of classifying toe-walking severity in children with cerebral palsy using a sensorized shoe., 2009, 2009, 5163-6.		4
141	Detecting epileptic seizures using wearable sensors. , 2009, , .		14
142	Monitoring Motor Fluctuations in Patients With Parkinson's Disease Using Wearable Sensors. IEEE Transactions on Information Technology in Biomedicine, 2009, 13, 864-873.	3.2	477
143	Effects of Training With a Robot-Virtual Reality System Compared With a Robot Alone on the Gait of Individuals After Stroke. Stroke, 2009, 40, 169-174.	2.0	260
144	Using Wearable Sensors to Monitor Physical Activities of Patients with COPD: A Comparison of Classifier Performance., 2009,,.		30

#	Article	IF	Citations
145	Motor unit firing characteristics in patients with amyotrophic lateral sclerosis., 2009, , .		7
146	Characterization of motor unit behavior in patients with amyotrophic lateral sclerosis., 2009,,.		7
147	Motor Unit Recruitment and Proprioceptive Feedback Decrease the Common Drive. Journal of Neurophysiology, 2009, 101, 1620-1628.	1.8	44
148	Advances in wearable technology for rehabilitation. Studies in Health Technology and Informatics, 2009, 145, 145-59.	0.3	20
149	Gerontechnology. IEEE Engineering in Medicine and Biology Magazine, 2008, 27, 10-14.	0.8	22
150	Wearable Medical Systems for p-Health. IEEE Reviews in Biomedical Engineering, 2008, 1, 62-74.	18.0	257
151	Selected Papers From the 4th IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors. IEEE Transactions on Biomedical Circuits and Systems, 2008, 2, 249-250.	4.0	0
152	Processing Wearable Sensor Data to Optimize Deep-Brain Stimulation. IEEE Pervasive Computing, 2008, 7, 56-61.	1.3	9
153	Using wearable sensors to predict the severity of symptoms and motor complications in late stage Parkinson's Disease., 2008, 2008, 3686-9.		21
154	A Wearable Pelvic Sensor Design for Drop Foot Treatment in Post-Stroke Patients. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 1820-3.	0.5	2
155	Monitoring Mobility Assistive Device Use in Post-Stroke Patients. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 4372-5.	0.5	1
156	Analysis of Feature Space for Monitoring Persons with Parkinson's Disease With Application to a Wireless Wearable Sensor System. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 6291-4.	0.5	57
157	Wearable Wireless Sensor Network to Assess Clinical Status in Patients with Neurological Disorders. , 2007, , .		4
158	A novel design for an instrumented stairway. Journal of Biomechanics, 2007, 40, 702-704.	2.1	26
159	Identification of Tasks Performed by Stroke Patients Using a Mobility Assistive Device. , 2006, 2006, 1501-4.		11
160	Respiratory and stress-induced activation of low-threshold motor units in the human trapezius muscle. Experimental Brain Research, 2006, 175, 689-701.	1.5	15
161	Electrical Manifestations of Muscle Fatigue During Concentric and Eccentric Isokinetic Knee Flexion-Extension Movements. IEEE Transactions on Biomedical Engineering, 2006, 53, 1309-1316.	4.2	48
162	Noise-enhanced balance control in patients with diabetes and patients with stroke. Annals of Neurology, 2006, 59, 4-12.	5.3	310

#	Article	IF	Citations
163	Effects on Normal Gait of a New Active Knee Orthosis for Hemiparetic Gait Retraining., 2006, 2006, 1232-5.		6
164	Identification of Tasks Performed by Stroke Patients Using a Mobility Assistive Device. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
165	A Clinical Comparison of Variable-Damping and Mechanically Passive Prosthetic Knee Devices. American Journal of Physical Medicine and Rehabilitation, 2005, 84, 563-575.	1.4	237
166	Transcranial magnetic stimulation. IEEE Engineering in Medicine and Biology Magazine, 2005, 24, 20-21.	0.8	1
167	Using hierarchical clustering methods to classify motor activities of COPD patients from wearable sensor data. Journal of NeuroEngineering and Rehabilitation, 2005, 2, 16.	4.6	44
168	Advances in wearable technology and applications in physical medicine and rehabilitation., 2005, 2, 2.		280
169	Faces of emotion in human-computer interaction. , 2005, , .		27
170	Data mining techniques to detect motor fluctuations in Parkinson's disease. , 2004, 2004, 4766-9.		51
171	A sEMG-based method for assessing the design of computer mice. , 2004, 2004, 2450-3.		11
172	JNER: a forum to discuss how neuroscience and biomedical engineering are reshaping physical medicine $\&$ rehabilitation., 2004, 1, 1.		68
173	Wearable sensors/systems and their impact on biomedical engineering. IEEE Engineering in Medicine and Biology Magazine, 2003, 22, 18-20.	0.8	300
174	Data mining of motor patterns recorded with wearable technology. IEEE Engineering in Medicine and Biology Magazine, 2003, 22, 110-119.	0.8	52
175	Reliability of EMG time-frequency measures of fatigue during repetitive lifting. Medicine and Science in Sports and Exercise, 2002, 34, 1316-1323.	0.4	30
176	Changes in the surface EMG signal and the biomechanics of motion during a repetitive lifting task. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2002, 10, 38-47.	4.9	77
177	Time-frequency methods applied to muscle fatigue assessment during dynamic contractions. Journal of Electromyography and Kinesiology, 1999, 9, 337-350.	1.7	108
178	EMG assessment of back muscle function during cyclical lifting. Journal of Electromyography and Kinesiology, 1998, 8, 233-245.	1.7	84
179	Detection of Subclinical Mild Traumatic Brain Injury (mTBI) Through Speech and Gait., 0,,.		11