Paolo Bonato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3266062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of wearable sensors and systems with application in rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 21.	4.6	1,619
2	Muscle synergy patterns as physiological markers of motor cortical damage. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14652-14656.	7.1	479
3	Monitoring Motor Fluctuations in Patients With Parkinson's Disease Using Wearable Sensors. IEEE Transactions on Information Technology in Biomedicine, 2009, 13, 864-873.	3.2	477
4	Technology in Parkinson's disease: Challenges and opportunities. Movement Disorders, 2016, 31, 1272-1282.	3.9	464
5	Gait impairments in Parkinson's disease. Lancet Neurology, The, 2019, 18, 697-708.	10.2	374
6	Noise-enhanced balance control in patients with diabetes and patients with stroke. Annals of Neurology, 2006, 59, 4-12.	5.3	310
7	Wearable Sensors and Systems. IEEE Engineering in Medicine and Biology Magazine, 2010, 29, 25-36.	0.8	305
8	Wearable sensors/systems and their impact on biomedical engineering. IEEE Engineering in Medicine and Biology Magazine, 2003, 22, 18-20.	0.8	300
9	Advances in wearable technology and applications in physical medicine and rehabilitation. , 2005, 2, 2.		280
10	Effects of Training With a Robot-Virtual Reality System Compared With a Robot Alone on the Gait of Individuals After Stroke. Stroke, 2009, 40, 169-174.	2.0	260
11	Wearable Medical Systems for p-Health. IEEE Reviews in Biomedical Engineering, 2008, 1, 62-74.	18.0	257
12	Patient specific ankle-foot orthoses using rapid prototyping. Journal of NeuroEngineering and Rehabilitation, 2011, 8, 1.	4.6	257
13	A Clinical Comparison of Variable-Damping and Mechanically Passive Prosthetic Knee Devices. American Journal of Physical Medicine and Rehabilitation, 2005, 84, 563-575.	1.4	237
14	A roadmap for implementation of patientâ€centered digital outcome measures in Parkinson's disease obtained using mobile health technologies. Movement Disorders, 2019, 34, 657-663.	3.9	213
15	Wearable Sensing and Telehealth Technology with Potential Applications in the Coronavirus Pandemic. IEEE Reviews in Biomedical Engineering, 2021, 14, 48-70.	18.0	174
16	In Situ Monitoring of Health in Older Adults: Technologies and Issues. Journal of the American Geriatrics Society, 2010, 58, 1579-1586.	2.6	168
17	Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait and Posture, 2010, 31, 433-437.	1.4	165
18	A Novel Approach to Monitor Rehabilitation Outcomes in Stroke Survivors Using Wearable Technology. Proceedings of the IEEE, 2010, 98, 450-461.	21.3	139

#	Article	IF	CITATIONS
19	A Web-Based System for Home Monitoring of Patients With Parkinson's Disease Using Wearable Sensors. IEEE Transactions on Biomedical Engineering, 2011, 58, 831-836.	4.2	134
20	From A to Z: Wearable technology explained. Maturitas, 2018, 113, 40-47.	2.4	126
21	Time-frequency methods applied to muscle fatigue assessment during dynamic contractions. Journal of Electromyography and Kinesiology, 1999, 9, 337-350.	1.7	108
22	Recent machine learning advancements in sensor-based mobility analysis: Deep learning for Parkinson's disease assessment. , 2016, 2016, 655-658.		99
23	Impact of Tai Chi exercise on multiple fracture-related risk factors in post-menopausal osteopenic women: a pilot pragmatic, randomized trial. BMC Complementary and Alternative Medicine, 2012, 12, 7.	3.7	94
24	The effect of arm weight support on upper limb muscle synergies during reaching movements. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 22.	4.6	93
25	EMG assessment of back muscle function during cyclical lifting. Journal of Electromyography and Kinesiology, 1998, 8, 233-245.	1.7	84
26	mHealth and wearable technology should replace motor diaries to track motor fluctuations in Parkinson's disease. Npj Digital Medicine, 2020, 3, 6.	10.9	83
27	Changes in the surface EMG signal and the biomechanics of motion during a repetitive lifting task. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2002, 10, 38-47.	4.9	77
28	Enabling Stroke Rehabilitation in Home and Community Settings: A Wearable Sensor-Based Approach for Upper-Limb Motor Training. IEEE Journal of Translational Engineering in Health and Medicine, 2018, 6, 1-11.	3.7	75
29	Can mHealth Technology Help Mitigate the Effects of the COVID-19 Pandemic?. IEEE Open Journal of Engineering in Medicine and Biology, 2020, 1, 243-248.	2.3	69
30	JNER: a forum to discuss how neuroscience and biomedical engineering are reshaping physical medicine & rehabilitation. , 2004, 1, 1.		68
31	Estimating fugl-meyer clinical scores in stroke survivors using wearable sensors. , 2011, 2011, 5839-42.		65
32	Robotic Gait Rehabilitation Trainer. IEEE/ASME Transactions on Mechatronics, 2014, 19, 490-499.	5.8	58
33	Analysis of Feature Space for Monitoring Persons with Parkinson's Disease With Application to a Wireless Wearable Sensor System. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 6291-4.	0.5	57
34	Home monitoring of patients with Parkinson's disease via wearable technology and a web-based application. , 2010, 2010, 4411-4.		55
35	Enabling precision rehabilitation interventions using wearable sensors and machine learning to track motor recovery. Npj Digital Medicine, 2020, 3, 121.	10.9	55
36	Development of a Body Sensor Network to Detect Motor Patterns of Epileptic Seizures. IEEE Transactions on Biomedical Engineering, 2012, 59, 3204-3211.	4.2	53

#	Article	IF	CITATIONS
37	Data mining of motor patterns recorded with wearable technology. IEEE Engineering in Medicine and Biology Magazine, 2003, 22, 110-119.	0.8	52
38	Data mining techniques to detect motor fluctuations in Parkinson's disease. , 2004, 2004, 4766-9.		51
39	Tracking motor recovery in stroke survivors undergoing rehabilitation using wearable technology. , 2010, 2010, 6858-61.		50
40	Electrical Manifestations of Muscle Fatigue During Concentric and Eccentric Isokinetic Knee Flexion-Extension Movements. IEEE Transactions on Biomedical Engineering, 2006, 53, 1309-1316.	4.2	48
41	Advances in wearable technology and its medical applications. , 2010, 2010, 2021-4.		48
42	Using hierarchical clustering methods to classify motor activities of COPD patients from wearable sensor data. Journal of NeuroEngineering and Rehabilitation, 2005, 2, 16.	4.6	44
43	Motor Unit Recruitment and Proprioceptive Feedback Decrease the Common Drive. Journal of Neurophysiology, 2009, 101, 1620-1628.	1.8	44
44	The Parkinson's disease eâ€diary: Developing a clinical and research tool for the digital age. Movement Disorders, 2019, 34, 676-681.	3.9	43
45	Tai Chi for Reducing Dual-task Gait Variability, a Potential Mediator of Fall Risk in Parkinson's Disease: A Pilot Randomized Controlled Trial. Global Advances in Health and Medicine, 2018, 7, 216495611877538.	1.6	42
46	Evaluation of the Keeogo exoskeleton for assisting ambulatory activities in people with multiple sclerosis: an open-label, randomized, cross-over trial. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 117.	4.6	41
47	Robot-induced perturbations of human walking reveal a selective generation of motor adaptation. Science Robotics, 2017, 2, .	17.6	40
48	Detecting Sensitive Mobility Features for Parkinson's Disease Stages Via Machine Learning. Movement Disorders, 2021, 36, 2144-2155.	3.9	40
49	Advanced Robotic Therapy Integrated Centers (ARTIC): an international collaboration facilitating the application of rehabilitation technologies. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 30.	4.6	37
50	Development of a "transparent operation mode―for a lower-limb exoskeleton designed for children with cerebral palsy. , 2019, 2019, 512-517.		33
51	Upper extremity rehabilitation of children with cerebral palsy using accelerometer feedback on a multitouch display. , 2010, 2010, 1751-4.		32
52	A novel upper-limb function measure derived from finger-worn sensor data collected in a free-living setting. PLoS ONE, 2019, 14, e0212484.	2.5	32
53	Reliability of EMG time-frequency measures of fatigue during repetitive lifting. Medicine and Science in Sports and Exercise, 2002, 34, 1316-1323.	0.4	30
54	Using Wearable Sensors to Monitor Physical Activities of Patients with COPD: A Comparison of Classifier Performance. , 2009, , .		30

#	Article	IF	CITATIONS
55	Complex Upper-Limb Movements Are Generated by Combining Motor Primitives that Scale with the Movement Size. Scientific Reports, 2018, 8, 12918.	3.3	29
56	Faces of emotion in human-computer interaction. , 2005, , .		27
57	A novel design for an instrumented stairway. Journal of Biomechanics, 2007, 40, 702-704.	2.1	26
58	Clinical applications of wearable technology. , 2009, 2009, 6580-3.		26
59	Combining Dopaminergic Facilitation with Robot-Assisted Upper Limb Therapy in Stroke Survivors. American Journal of Physical Medicine and Rehabilitation, 2016, 95, 459-474.	1.4	26
60	The Use of a Finger-Worn Accelerometer for Monitoring of Hand Use in Ambulatory Settings. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 599-606.	6.3	26
61	Qigong Mind-Body Exercise as a Biopsychosocial Therapy for Persistent Post-Surgical Pain in Breast Cancer: A Pilot Study. Integrative Cancer Therapies, 2020, 19, 153473541989376.	2.0	26
62	Accelerometer data collected with a minimum set of wearable sensors from subjects with Parkinson's disease. Scientific Data, 2021, 8, 48.	5.3	25
63	A Preliminary Assessment of a Novel Pneumatic Unloading Knee Brace on the Gait Mechanics of Patients With Knee Osteoarthritis. PM and R, 2013, 5, 816-824.	1.6	24
64	Crowdsourcing digital health measures to predict Parkinson's disease severity: the Parkinson's Disease Digital Biomarker DREAM Challenge. Npj Digital Medicine, 2021, 4, 53.	10.9	24
65	Recommendation to Use Wearable-Based mHealth in Closed-Loop Management of Acute Cardiovascular Disease Patients During the COVID-19 Pandemic. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 903-908.	6.3	24
66	Tai Chi for osteopenic women: design and rationale of a pragmatic randomized controlled trial. BMC Musculoskeletal Disorders, 2010, 11, 40.	1.9	23
67	Longitudinal monitoring of patients with Parkinson's disease via wearable sensor technology in the home setting. , 2011, 2011, 1552-5.		23
68	Gerontechnology. IEEE Engineering in Medicine and Biology Magazine, 2008, 27, 10-14.	0.8	22
69	Balance Impairments in Different Subgroups of Patients With Migraine. Headache, 2017, 57, 363-374.	3.9	22
70	Using wearable sensors to predict the severity of symptoms and motor complications in late stage Parkinson's Disease. , 2008, 2008, 3686-9.		21
71	Gait Rehabilitation therapy using robot generated force fields applied at the pelvis. , 2010, , .		21
72	Major trends in mobility technology research and development: Overview of the results of the NSF-WTEC European study. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 22.	4.6	20

#	Article	IF	CITATIONS
73	The Role Played by Mass, Friction, and Inertia on the Driving Torques of Lower-Limb Gait Training Exoskeletons. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 125-136.	3.2	20
74	Cortical correlates in upright dynamic and static balance in the elderly. Scientific Reports, 2021, 11, 14132.	3.3	20
75	Can Tai Chi training impact fractal stride time dynamics, an index of gait health, in older adults? Cross-sectional and randomized trial studies. PLoS ONE, 2017, 12, e0186212.	2.5	20
76	Advances in wearable technology for rehabilitation. Studies in Health Technology and Informatics, 2009, 145, 145-59.	0.3	20
77	Predicting and Monitoring Upper-Limb Rehabilitation Outcomes Using Clinical and Wearable Sensor Data in Brain Injury Survivors. IEEE Transactions on Biomedical Engineering, 2021, 68, 1871-1881.	4.2	19
78	Robot-Driven Locomotor Perturbations Reveal Synergy-Mediated, Context-Dependent Feedforward and Feedback Mechanisms of Adaptation. Scientific Reports, 2020, 10, 5104.	3.3	18
79	A wearable system for long-term monitoring of knee kinematics. , 2012, , .		17
80	Decomposing time series data by a non-negative matrix factorization algorithm with temporally constrained coefficients. , 2015, 2015, 3496-9.		17
81	Comparing a passive-elastic and a powered prosthesis in transtibial amputees. , 2011, 2011, 8255-8.		16
82	A Simple Low-Cost Wearable Sensor for Long-Term Ambulatory Monitoring of Knee Joint Kinematics. IEEE Transactions on Biomedical Engineering, 2020, 67, 3483-3490.	4.2	16
83	Muscular and cortical activation during dynamic and static balance in the elderly: A scoping review. Aging Brain, 2021, 1, 100013.	1.3	16
84	Respiratory and stress-induced activation of low-threshold motor units in the human trapezius muscle. Experimental Brain Research, 2006, 175, 689-701.	1.5	15
85	Assessing aberrant muscle activity patterns via the analysis of surface EMG data collected during a functional evaluation. BMC Musculoskeletal Disorders, 2019, 20, 13.	1.9	15
86	Detecting epileptic seizures using wearable sensors. , 2009, , .		14
87	Robotic Gait Training in an Adult With Cerebral Palsy: A Case Report. PM and R, 2010, 2, 71-75.	1.6	14
88	An advanced rehabilitation robotic system for augmenting healthcare. , 2011, 2011, 2073-6.		14
89	"Making Peace with Our Bodiesâ€: A Qualitative Analysis of Breast Cancer Survivors' Experiences with Qigong Mind–Body Exercise. Journal of Alternative and Complementary Medicine, 2020, 26, 827-834.	2.1	14
90	Towards the Design of a Ring Sensor-based mHealth System to Achieve Optimal Motor Function in Stroke Survivors. , 2019, 3, 1-26.		14

Paolo Bonato

#	Article	IF	CITATIONS
91	Healthcare Innovations to Address the Challenges of the COVID-19 Pandemic. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 3294-3302.	6.3	13
92	Guest Editorial Special Section on Personal Health Systems. IEEE Transactions on Information Technology in Biomedicine, 2010, 14, 360-363.	3.2	12
93	Editorial: Special Issue on Health Informatics and Personalized Medicine. IEEE Transactions on Biomedical Engineering, 2013, 60, 143-146.	4.2	12
94	Structural Integration as an Adjunct to Outpatient Rehabilitation for Chronic Nonspecific Low Back Pain: A Randomized Pilot Clinical Trial. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-19.	1.2	12
95	A novel method for assessing the severity of levodopa-induced dyskinesia using wearable sensors. , 2015, 2015, 8087-90.		12
96	Estimating Bradykinesia in Parkinson's Disease with a Minimum Number of Wearable Sensors. , 2017, , .		12
97	Age-specific differences in the time-frequency representation of surface electromyographic data recorded during a submaximal cyclic back extension exercise: a promising biomarker to detect early signs of sarcopenia. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 8.	4.6	12
98	A sEMG-based method for assessing the design of computer mice. , 2004, 2004, 2450-3.		11
99	Identification of Tasks Performed by Stroke Patients Using a Mobility Assistive Device. , 2006, 2006, 1501-4.		11
100	Guest Editorial : Special Issue on Internet of Things for Smart and Connected Health. IEEE Internet of Things Journal, 2015, 2, 1-4.	8.7	11
101	Detection of Subclinical Mild Traumatic Brain Injury (mTBI) Through Speech and Gait. , 0, , .		11
102	Trajectory Tracking Impedance Controller in 6-DoF Lower-Limb Exoskeleton for Over-Ground Walking Training: Preliminary Results. , 2021, , .		11
103	Guest EditorialSpecial Section on Smart Wearable Devices for Human Health and Protection. IEEE Transactions on Information Technology in Biomedicine, 2010, 14, 691-693.	3.2	10
104	Haptic system for hand rehabilitation integrating an interactive game with an advanced robotic device. , 2010, , .		10
105	Processing Wearable Sensor Data to Optimize Deep-Brain Stimulation. IEEE Pervasive Computing, 2008, 7, 56-61.	1.3	9
106	Assessment of lower extremity motor adaptation via an extension of the Force Field Adaptation Paradigm. , 2010, 2010, 4522-5.		9
107	Robotically generated force fields for stroke patient pelvic obliquity gait rehabilitation. , 2010, , .		9
108	Estimating Neural Control from Concentric vs. Eccentric Surface Electromyographic Representations during Fatiguing, Cyclic Submaximal Back Extension Exercises. Frontiers in Physiology, 2017, 8, 299.	2.8	9

#	Article	IF	CITATIONS
109	Evaluation of a lower-extremity robotic exoskeleton for people with knee osteoarthritis. Assistive Technology, 2022, 34, 543-556.	2.0	9
110	A novel sensorized shoe system to classify gait severity in children with cerebral palsy. , 2012, 2012, 5010-3.		8
111	Using Wearable Motion Sensors to Estimate Longitudinal Changes in Movement Quality in Stroke and Traumatic Brain Injury Survivors Undergoing Rehabilitation. Archives of Physical Medicine and Rehabilitation, 2016, 97, e117.	0.9	8
112	Alertness Training Improves Spatial Bias and Functional Ability in Spatial Neglect. Annals of Neurology, 2020, 88, 747-758.	5.3	8
113	Effect of using of a lower-extremity exoskeleton on disability of people with multiple sclerosis. Disability and Rehabilitation: Assistive Technology, 2023, 18, 475-482.	2.2	8
114	Limb and trunk accelerometer data collected with wearable sensors from subjects with Parkinson's disease. Scientific Data, 2021, 8, 47.	5.3	8
115	Motor unit firing characteristics in patients with amyotrophic lateral sclerosis. , 2009, , .		7
116	Characterization of motor unit behavior in patients with amyotrophic lateral sclerosis. , 2009, , .		7
117	Enhancing robotic gait training via augmented feedback. , 2010, 2010, 2271-4.		7
118	A novel flexible wearable sensor for estimating joint-angles. , 2016, , .		7
119	Motor skill acquisition during a balance task as a process of optimization of motor primitives. European Journal of Neuroscience, 2020, 51, 2082-2094.	2.6	7
120	Assessing the Feasibility of Augmenting Fall Detection Systems by Relying on UWB-Based Position Tracking and a Home Robot. Sensors, 2020, 20, 5361.	3.8	7
121	Sensorimotor conflict tests in an immersive virtual environment reveal subclinical impairments in mild traumatic brain injury. Scientific Reports, 2020, 10, 14773.	3.3	7
122	Variations in rest-activity rhythm are associated with clinically measured disease severity in Parkinson's disease. Chronobiology International, 2020, 37, 699-711.	2.0	7
123	Effects on Normal Gait of a New Active Knee Orthosis for Hemiparetic Gait Retraining. , 2006, 2006, 1232-5.		6
124	Feasibility of an Exoskeleton-Based Interactive Video Game System for Upper Extremity Burn Contractures. PM and R, 2016, 8, 445-452.	1.6	6
125	Using a Minimum Set of Wearable Sensors to Assess Quality of Movement in Stroke Survivors. , 2017, , .		6
126	UWB Tracking for Home Care Systems with Off-the-Shelf Components. , 2018, , .		6

#	Article	IF	CITATIONS
127	From hand-perspective visual information to grasp type probabilities. , 2019, , .		6
128	Can kinematic parameters of 3D reach-to-target movements be used as a proxy for clinical outcome measures in chronic stroke rehabilitation? An exploratory study. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 106.	4.6	6
129	A low-power multi-modal body sensor network with application to epileptic seizure monitoring. , 2011, 2011, 1806-9.		5
130	Activity detection in uncontrolled free-living conditions using a single accelerometer. , 2015, , .		5
131	Forward and backward walking share the same motor modules and locomotor adaptation strategies. Heliyon, 2021, 7, e07864.	3.2	5
132	Voice Biomarkers of Recovery From Acute Respiratory Illness. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 2787-2795.	6.3	5
133	Wearable Wireless Sensor Network to Assess Clinical Status in Patients with Neurological Disorders. , 2007, , .		4
134	Assessing the feasibility of classifying toe-walking severity in children with cerebral palsy using a sensorized shoe. , 2009, 2009, 5163-6.		4
135	MercuryLive: A Web-Enhanced Platform for Long-Term High Fidelity Motion Analysis. , 2010, , .		4
136	Development of a platform to combine sensor networks and home robots to improve fall detection in the home environment. , 2011, 2011, 5331-4.		4
137	Cross-Comparison of Three Electromyogram Decomposition Algorithms Assessed With Experimental and Simulated Data. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 32-40.	4.9	4
138	Usability of a new over-ground bodyweight support device (Andago® 2.0) for gait training. Archives of Physical Medicine and Rehabilitation, 2016, 97, e134.	0.9	4
139	Cervical Posture Therapy Using a Head-Based Computer Interface in Children With Cerebral Palsy. Archives of Physical Medicine and Rehabilitation, 2017, 98, e40.	0.9	4
140	A Novel Finger-Worn Sensor for Ambulatory Monitoring of Hand Use. , 2017, , .		4
141	Finger-Worn Sensors for Accurate Functional Assessment of the Upper Limbs in Real-World Settings. , 2018, 2018, 4440-4443.		4
142	Evaluation of a toolkit for standardizing clinical measures of muscle tone. Physiological Measurement, 2018, 39, 085001.	2.1	4
143	Wireless Low Energy System Architecture for Event-Driven Surface Electromyography. Lecture Notes in Electrical Engineering, 2019, , 179-185.	0.4	4
144	The impact of chronotype on circadian rest-activity rhythm and sleep characteristics across the week. Chronobiology International, 2021, 38, 1575-1590.	2.0	4

#	Article	IF	CITATIONS
145	Design of human — Machine interface and altering of pelvic obliquity with RGR Trainer. , 2011, 2011, 5975496.		3
146	Design of a Gait Training device for control of pelvic obliquity. , 2012, 2012, 3620-3.		3
147	Comparison of methods for estimating motor unit firing rate time series from firing times. Journal of Electromyography and Kinesiology, 2016, 31, 22-31.	1.7	3
148	A Finger-Worn Ring Sensor to Capture Hand Movements in an Ambulatory Setting. Archives of Physical Medicine and Rehabilitation, 2017, 98, e26.	0.9	3
149	Qigong Training Positively Impacts Both Posture and Mood in Breast Cancer Survivors With Persistent Post-surgical Pain: Support for an Embodied Cognition Paradigm. Frontiers in Psychology, 2022, 13, 800727.	2.1	3
150	A Wearable Pelvic Sensor Design for Drop Foot Treatment in Post-Stroke Patients. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 1820-3.	0.5	2
151	A sensorized glove for hand rehabilitation. , 2009, , .		2
152	Robotic-assisted Gait Training as Part of the Rehabilitation Program in Persons with Traumatic and Anoxic Brain Injury. Archives of Physical Medicine and Rehabilitation, 2016, 97, e117.	0.9	2
153	Transcranial magnetic stimulation. IEEE Engineering in Medicine and Biology Magazine, 2005, 24, 20-21.	0.8	1
154	Monitoring Mobility Assistive Device Use in Post-Stroke Patients. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 4372-5.	0.5	1
155	Augmenting Back Pain Exercise Therapy Using an Interactive Gaming-Based Intervention in The Home Setting. Archives of Physical Medicine and Rehabilitation, 2016, 97, e133.	0.9	1
156	Dual Task Assessment of the Impact of Tai Chi on Postural Control in Parkinson's Disease. Archives of Physical Medicine and Rehabilitation, 2017, 98, e55.	0.9	1
157	Estimating Clinical Scores From Wearable Sensor Data In Stroke Survivors. Archives of Physical Medicine and Rehabilitation, 2017, 98, e65.	0.9	1
158	A Novel End-Effector System to Enable Pro-Supination Movements During Robot-Assisted Upper-Limb Training. Archives of Physical Medicine and Rehabilitation, 2019, 100, e165.	0.9	1
159	Upper Extremity Rehabilitation with the BURT Robotic Arm. Archives of Physical Medicine and Rehabilitation, 2019, 100, e208-e209.	0.9	1
160	Guest Editorial Flexible Sensing and Medical Imaging for Cerebro-Cardiovascular Health. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3189-3190.	6.3	1
161	Keynote: Digital Health Technologies and Their Role in the Development of Precision Rehabilitation Interventions. , 2021, , .		1
162	Unraveling Mechanisms Underlying the Effectiveness of Robot-Assisted Gait Training in Children with Cerebral Palsy. Biosystems and Biorobotics, 2013, , 1139-1142.	0.3	1

#	Article	IF	CITATIONS
163	Healthy Subject Testing with the Robotic Gait Rehabilitation (RGR) Trainer. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2013, , 341-348.	0.6	1
164	Human balance models optimized using a large-scale, parallel architecture with applications to mild traumatic brain injury. , 2020, , .		1
165	Artificial Intelligence for Detecting COVID-19 With the Aid of Human Cough, Breathing and Speech Signals: Scoping Review. IEEE Open Journal of Engineering in Medicine and Biology, 2022, 3, 235-241.	2.3	1
166	Selected Papers From the 4th IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors. IEEE Transactions on Biomedical Circuits and Systems, 2008, 2, 249-250.	4.0	0
167	Calculation of Surface Electromygram Discharge Rate. , 2013, , .		0
168	Guest Editorial: Special Section on Point-of-Care Healthcare Technologies. IEEE Transactions on Biomedical Engineering, 2013, 60, 3267-3268.	4.2	0
169	Poster 272 Risk Factors of Reamputation or Amputation of the Contralateral Lower Limb in Amputees with Dysvascular Disease. PM and R, 2015, 7, S181-S181.	1.6	Ο
170	Retrospective Analysis of Clinical Practice Data of Robot-Assisted Gait Training in Patients with Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2016, 97, e136.	0.9	0
171	Designing a Wrist-Worn Sensor to Monitor Upper-Limb Use in Stroke Survivors: Stakeholder Focus Group Results. Archives of Physical Medicine and Rehabilitation, 2017, 98, e50.	0.9	Ο
172	Functional Ambulation in a Patient With Primary Lateral Sclerosis Using a Lower Extremity Robotic Exoskeleton. Archives of Physical Medicine and Rehabilitation, 2017, 98, e69.	0.9	0
173	MOVER: Mobile Virtual Enhancements for Rehabilitation. Archives of Physical Medicine and Rehabilitation, 2017, 98, e83.	0.9	Ο
174	Robot-Assisted Gait Training in a Rehabilitation Facility: An Analysis of Current Practice. Archives of Physical Medicine and Rehabilitation, 2017, 98, e105.	0.9	0
175	A Novel Pediatric Exoskeleton for Over-Ground Gait Training in Children with Cerebral Palsy. Archives of Physical Medicine and Rehabilitation, 2017, 98, e26-e27.	0.9	Ο
176	Biomechanical Evaluation of Exoskeleton-Assisted Gait in Patients with Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2017, 98, e37.	0.9	0
177	Muscle Synergies as the Basis for the Control of a Hand Prosthesis. Archives of Physical Medicine and Rehabilitation, 2018, 99, e207-e208.	0.9	Ο
178	Neurotechnology in Acquired Brain Injury Rehabilitation. , 2021, , .		0
179	Identification of Tasks Performed by Stroke Patients Using a Mobility Assistive Device. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0