
LÃ;szlÃ³ OroszlÃ;ny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/326584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Time-dependent electric transport in nodal loop semimetals. Physical Review B, 2021, 104, .	3.2	ο
2	Competition of topological and topologically trivial phases in patterned graphene based heterostructures. Physical Review B, 2020, 101, .	3.2	5
3	Poor man's topological quantum gate based on the Su-Schrieffer-Heeger model. Physical Review B, 2019, 100, .	3.2	37
4	Uniaxial strain induced topological phase transition in bismuth–tellurohalide–graphene heterostructures. Nanoscale, 2019, 11, 12704-12711.	5.6	10
5	Exchange interactions from a nonorthogonal basis set: From bulk ferromagnets to the magnetism in low-dimensional graphene systems. Physical Review B, 2019, 99, .	3.2	7
6	Topological Phase Diagram of BiTeX–Graphene Hybrid Structures. Applied Sciences (Switzerland), 2019, 9, 4330.	2.5	3
7	Exfoliation of single layer BiTel flakes. 2D Materials, 2018, 5, 031013.	4.4	34
8	Site-Resolved Contributions to the Magnetic-Anisotropy Energy and Complex Spin Structure of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>Fe</mml:mi><mml:mo>/</mml:mo><mml:mi>MgO</mml:mi>Sandwiches. Physical Review Applied, 2018, 9, .</mml:mrow></mml:math>	∙ow <mark>3.8</mark> /mm	l:math>
9	A multiscale model of the effect of Ir thickness on the static and dynamic properties of Fe/Ir/Fe films. Scientific Reports, 2018, 8, 3879.	3.3	1
10	Topological and trivial magnetic oscillations in nodal loop semimetals. Physical Review B, 2018, 97, .	3.2	23
11	Transport Properties of Grapheneâ€BiTel Hybrid Structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, 1700215.	0.8	3
12	Reprint of : Finite-size effects on the minimal conductivity in graphene with Rashba spin–orbit coupling. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 82, 216-221.	2.7	0
13	A Short Course on Topological Insulators. Lecture Notes in Physics, 2016, , .	0.7	604
14	Finite-size effects on the minimal conductivity in graphene with Rashba spin–orbit coupling. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 75, 1-6.	2.7	1
15	Precursor configurations and post-rupture evolution of Ag–CO–Ag single-molecule junctions. Nanoscale, 2014, 6, 14784-14791.	5.6	13
16	Diverging dc conductivity due to a flat band in a disordered system of pseudospin-1 Dirac-Weyl fermions. Physical Review B, 2013, 88, .	3.2	57
17	Intraband electron focusing in bilayer graphene. New Journal of Physics, 2012, 14, 063028.	2.9	16
18	Gap generation in topological insulator surface states by nonferromagnetic magnets. Physical Review B. 2012, 86, .	3.2	16

#	Article	IF	CITATIONS
19	Effect of the band structure topology on the minimal conductivity for bilayer graphene with symmetry breaking. Physical Review B, 2012, 85, .	3.2	22
20	Fast and slow edges in bilayer graphene nanoribbons: Tuning the transition from band to Mott insulator. Physical Review B, 2010, 81, .	3.2	15
21	Carbon Nanotube Archimedes Screws. ACS Nano, 2010, 4, 7363-7366.	14.6	5
22	Adsorbate-Limited Conductivity of Graphene. Physical Review Letters, 2008, 101, 196803.	7.8	201